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PREFACE

Several years ago it was realized that thermal radiation was becoming
of increasing importance in aerospace research and design. This im-
portance arose from several areas: high temperatures associated with
increased engine efficiencies, high-velocity flight which is accompanied
by elevated temperatures from frictional heating, and the operation of

.devices beyond the Earth’s atmosphere where convection vanishes and

radiation becomes the only external mode of heat transfer. As a result,
a course in thermal radiation was initiated at the NASA Lewis Research
Center as part of an internal advanced study program.

The course was divided into three main sections. The first dealt with
the radiation properties of opaque materials including a discussion of
the blackbody, electromagnetic theory, and measured properties. The
second discussed radiation exchange in enclosures both with and with-
out convection and conduction. The third section treated radiation in
partially transmitting materials — chiefly gases.

When the course was originated, there was not available any single
radiation textbook that covered the desired span of material. As a result
the authors began writing a set of notes; the present publication is an
outgrowth of the notes dealing with the first of the three main sections.

During the past few years, a few radiation textbooks have appeared in
the literature; hence, the need for a single reference has been partially
satisfied. The objectives here are more extensive than the content of a
standard textbook intended for a one-semester course. Many parts of
the present discussion have been made quite detailed so that they will
serve as a source of reference for some of the more subtle points in
radiation theory. The detailed treatment has resulted in some of the sec-
tions being rather long, but the intent was to be thorough rather than to
try to conserve space. The sections have been subdivided so that specific
portions can be located for easy reference.

This volume is divided into five chapters. The introduction discusses
the conditions where thermal radiation is of importance and indicates
some of the inherent differences and complexities of radiation problems
as compared with convection and conduction.

Chapter 2 deals with the blackbody, which is defined as a perfect
absorber. It is important to understand the behavior of a blackbody before
considering real materials, as the blackbody provides an ideal perform-
ance with which real material performance can be compared. First the
blackbody is discussed qualitatively with its properties being deduced
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from the original definition of a perfect absorber. A quantitative elabora-
tion, including a numerical tabulation, then provides the blackbody
emission as a function of wavelength and temperature.

The third chapter is completely devoted to the definitions of emis-
sivity, absorptivity, and reflectivity. These properties are used to com-
pare the radiative performance of real materials with the ideal (blackbody)
behavior. A functional notation has been introduced that includes prime
superscripts to denote directional quantities and by which ambiguities
in the various hemispherical and directional quantities are avoided. An
extensive examination of the property definitions is made in order to
demonstrate when it is valid to use various reciprocity relations and
equalities, such as Kirchhoff’s laws relating emissivity and absorptivity.
The restrictions on these relations are summarized in tables for con-
venient reference.

The use of classical electromagnetic theory for the prediction of
radiative properties is the subject of chapter 4. The electromagnetic
theory discussed deals with ideal surfaces and hence does not account
for the many factors (e.g., contamination and roughness) that influence
the behavior of real surfaces. In spite of this shortcoming, the theory
does provide a valuable basis for many observed trends and serves to
relate optical and electrical properties to radiative properties.

The final chapter illustrates the radiative performance of real materials
by showing a number of examples of property variations with wavelength
and temperature.

Each chapter contains numerical examples to acquaint the reader with
the use of the analytical relations. It is hoped that these examples will
help bridge the gap between theory and practical application.

iv
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Chapter 1. Introduction

All substances continuously emit electromagnetic radiation by virtue
of the molecular and atomic agitation associated with the internal energy
of the material. In the equilibrium state, this internal energy is in direct
proportion to the temperature of the substance. The emitted radiant
energy can range from radio waves, which can have wavelengths of miles,
to cosmic rays with wavelengths of less than 10-1° centimeter (em). In
this volume, only radiation that is detected as heat or light will be con-
sidered; this is termed thermal radiation, and it occupies an intermediate
wavelength range. This range is defined explicitly in section 1.5.

Although radiant energy constantly surrounds us, we are not very
aware of it because our bodies are able to detect only portions of it di-
rectly. Other portions require detection by use of some intermediate
instrumentation. Our eyes are sensitive direct detectors of light, being
able to form images of objects, but are relatively insensitive to heat
(infrared) radiation. Our skin is a direct detector for heat radiation but
not a good one. The skin is not aware of images of warm or cool surfaces
around us unless the heat radiation is large. We require indirect means
such as infrared-sensitive film in a camera to form images using heat
radiation.

Before discussing the nature of thermal radiation in detail, it is well
to consider why thermal radiation is so important in our modern
technology.

11 IMPORTANCE OF THERMAL RADIATION

One of the factors that causes some of the important applications of
thermal radiation to arise is the dependence of radiant emission on tem-
perature. For conduction and convection the transfer of energy between
two locations depends on the temperature difference of the locations to
approximately the first power.! The transfer of energy by thermal radia-
tion, however, depends on the differences of the individual absolute tem-
peratures of the bodies each raised to a power in the range of about 4 or 5.

From this basic difference between radiation and the convection and
conduction energy exchange mechanisms, it is evident that the impor-
tance of radiation becomes intensified at high absolute temperature
levels. Consequently, radiation contributes substantially to the heat

! For free convection or when variable property effects are included, the power of the temperature difference may be-
come larger than unity but usually in convection and duction does not h 2.
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transfer in furnaces and combustion chambers and in the energy emis-
sion from a nuclear explosion. The laws of radiation govern the tempera-
ture distribution within the Sun and the radiant emission from the Sun
or from a source duplicating the Sun in a solar simulator. Some devices
for space applications are designed to operate at high temperature levels
in order to achieve high thermal efficiency. Hence, radiation must often
be considered when calculating thermal effects in devices such as a
rocket nozzle, a nuclear powerplant, or a gaseous core nuclear rocket.

A second distinguishing feature of radiative transfer is that no medium
need be present between two locations in order for radiant interchange
to occur. The radiative energy will pass perfectly through a vacuum.
This is in contrast to convection and conduction where a physical
medium must be present to carry the energy with the convective flow
or to transport it by means of thermal conduction. When no medium
is present, radiation becomes the only significant mode of heat transfer.
Some common instances are the heat leakage through the evacuated
walls of a Dewar flask or thermos bottle, or the heat dissipation from
the filament of a vacuum tube. A more recent application is the radiation
used to reject waste heat from a powerplant operating in space.

Radiation can be of importance in some instances even though the
temperature levels are not elevated and other modes of heat transfer
are present. The following example is quoted from a Cleveland news-
paper published in the spring of 1964. A florist “noted the recurrence
of a phenomenon he has observed for two seasons since using plastic
coverings over [flower] flats. Water collecting in the plastic has formed
ice a quarter-inch thick [at night] when the official [temperature] reading
was well above freezing. ‘I'd like an answer to that, I supposed you
couldn’t get ice without freezing temperatures.” ”” The florist’s oversight
was in considering only the convection to the air and omitting the night-
time radiation loss occurring between the water covered surface and the
very cold heat sink of outer space.

Another similar illustration is the discomfort that a person experiences
in a room where cold surfaces are present. Cold window surfaces, for
example, have a chilling effect as the body radiates directly to them
without receiving compensating energy from them. Covering the windows
with a shade or drape will greatly decrease the bodily discomfort.

Finally, we note that the thermal radiation that we shall examine is
in the wavelength region that gives mankind heat, light, photosynthesis,
and all their attendant benefits. This in itself is strong justification for
studying thermal radiation. Our existence depends on the solar radiant
energy incident upon the Earth. Understanding the interaction of this
radiation with the atmosphere and surface of the Earth can provide
additional benefits in its utilization.
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1.2 SYMBOLS

c speed of electromagnetic radiation propagation in medium

Co speed of electromagnetic radiation propagation in vacuum

k thermal conductivity

n index of refraction, c,/c

qe energy per unit area per unit time resulting from heat con-
duction

qr radiant energy per unit area per unit time arriving at surface
element

gs radiant energy per unit area per unit time arriving from unit
surface element

Qv radiant energy per unit area per unit time arriving from unit
volume element

S surface area

T temperature

V volume

X, ¥,z coordinates in Cartesian system

arbitrary direction
wavelength in vacuum
frequency

A ]

1.3 COMPLEXITIES INHERENT IN RADIATION PROBLEMS

First let ns discuss some of the mathematical complexities that arise
from the basic nature of radiation exchange. In conduction and convec-
tion heat transfer, energy is transported through a physical medium.
The energy transferred into and from an infinitesimal volume element
of solid or fluid depends on the temperature gradients and physical
properties in the immediate vicinity of the element. For example, for
the relatively simple case of heat conduction in a material (no convection)
with temperature distribution T(x, y, z) and constant thermal conduc-
tivity k, the heat conduction is obtained by locally applying the following
Fourier conduction law:

e =K 1-
“.. o (1-1)

direction

For an elemental cube within a solid as shown in figure 1-1(a), a con-
sideration of the net heat flow in and out of all the faces using the terms
in the figure yields the Laplace equation governing the heat conduction
within the material
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9*T  o°*T  9*T
Gt 5 a0 (1-2)
The terms in this equation depend only on local temperature derivatives
in the material.

A similar although more complex analysis can be made for the con-
vection process, again demonstrating that the heat balance depends
only on the conditions in the immediate vicinity of the location being
considered.

o o M idyl”
Kok Iy &2 — ——+—dx>dydz
M i EZ
///’ dX]
e Solid material

;—Radiating differential
! volume of material

Radiating

differential
surface |
element——"

(a) Heat conduction terms for volume element in solid.
(b) Radiation terms for enclosure filled with radiating material.

FIGURE 1-1. — Comparison of types of terms for conduction and radiation heat balances.

In radiation, energy is transmitted between separated elements
without the need of a medium between the elements. Consider a heated
enclosure of surface S and volume V filled with radiating material (such
as gas or glass) as shown in figure 1-1(b). If g is the radiant energy flux
(energy per unit area and per unit time) arriving at d4 from an element
on the surface dS of the enclosure and g, arrives at d4 from an element of
the medium dV, then the total radiation arriving per unit area at d4 is
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gr= f gedS+ f godV (1-3)
S |4

These types of terms lead to heat balances in the form of integral equa-
tions which are generally not as familiar to the engineer as differential
equations. When radiation is combined with conduction and/or con-
vection, the presence of both integral and differential terms having dif-
ferent powers of temperature leads to nonlinear integrodifferential
equations. These are, in general, extremely difficult to solve.

In addition to the mathematical difficulties, there is a second com-
plexity inherent in radiation problems. This is in accurately specifying
the physical property values to be inserted into the equations. The
difficulty in specifying accurate property values arises because the
properties for solids depend on many variables such as: surface rough-
ness and degree of polish, purity of material, thickness of a coating such
as paint on a surface (for a thin coating the underlying material may
have an effect), temperature, wavelength of radiation, and angle at which
radiation leaves the surface. Unfortunately, many measurements have
been reported where all the pertinent surface conditions have not been
precisely defined.

1.4 WAVE AGAINST QUANTUM MODEL

The theory of radiant energy propagation can be considered from two
viewpoints—classical electromagnetic wave theory and quantum me-
chanics. The quantum-mechanical view of the interaction of radiation
and matter yields, in most cases, equations that are remarkably similar
to the classical results. With a few exceptions, thermal radiation may
therefore be viewed as a phenomenon based on the classical concept
of the transport of energy by electromagnetic waves. These exceptions,
however, include some of the most important effects common to radiative
transfer studies, such as the spectral distribution of the energy emitted
from a body and the radiative properties of gases. These can only be
explained and derived on the basis of quantum effects in which the
energy is assumed to be carried by discrete particles (photons). The
“true” nature of electromagnetic energy (i.e., waves or quanta) is not
known, nor is it generally important to the engineer. Throughout the
present work, the wave theory will generally be adhered to because it
has the greatest utility in engineering calculations and also generally
produces the same formal equations as the quantum theory. Occasional
reference will be made to phenomena where quantum arguments must
be invoked.



THERMAL RADIATION HEAT TRANSFER

1.5 ELECTROMAGNETIC SPECTRUM

Within the framework of the wave theory, electromagnetic radiation
follows the laws governing transverse waves that oscillate in a direction
perpendicular to the direction of travel. The speed of propagation for
electromagnetic radiation is the same as for light; light after all is simply
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FIGURE 1-2.—Spectrum of
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the special case of electromagnetic radiation in a small region of the
spectrum. In vacuum the speed of propagation is c,= 2.998 X 10'° centi-
meters per second (cm/sec) or 186 000 miles per second (mi/sec). The
speed ¢ in a medium is less than ¢, and for dielectrics is commonly
given in terms of the index of refraction n= c,/c, where n is greater than
unity.? For glass n is about 1.5, while for gases n is very close to 1.

Conversion of matter
to radiant energy

L Deceleration of
Radioactive high-energy

disintegration  partices

Electron ]
bombardment

Synchrotron
radiation

Electronic transi-
tions in gases
I Vibration-rotation transitions in gases,
T molecular vibrations in solids and liquids,
Rotation transitions and bound electron transitions in solids
in gases and lattice
vibrations in solids

Amplified oscillations
in electronic circuits

(b)

(b) Production mechanism.
electromagnetic radiation.
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The types of electromagnetic radiation can be classified according to
their wavelength A (or frequency v where ¢=2A»). Common units for
wavelength measurement are the micron (um) where 1 um=10-* cm or
10-¢ meter (m) and the angstrom (A) where 1 A=10-* m. Hence,
10* A=1 pum. A chart of the radiation spectrum is shown in figure 1-2.
A set of conversion factors for basic units in radiative transfer is givenin
tables I to III in the appendix.

The region of interest here includes a portion of the long wave fringe
of the ultraviolet, the visible light region which extends from wave-
lengths of approximately 0.4 to 0.7 um, and the infrared region which
extends from beyond the red end of the visible spectrum to about A = 1000
pm. The infrared region is sometimes divided into the near infrared,
extending from the visible region to about A =25 um, and the far infrared
composed of the longer wavelength portion of the infrared spectrum.

The column at the far right in figure 1-2 indicates the various mech-
anisms by which electromagnetic radiation is produced. Some of the
descriptions are from a quantum-mechanical viewpoint in which elec-
trons or molecules in a state of agitation undergo transitions from one
energy state to another. These transitions result in a radiative energy
release. The transitions may occur spontaneously, or they may be ini-
tiated by the presence of a radiation field.

In this chapter we have discussed the importance of thermal radia-
tion, the difficulties inherent in radiation problems, and the wavelength
region occupied by thermal radiation within the electromagnetic spec-
trum. In the next chapter, the radiative behavior of the ideal radiating
surface, termed a black surface, will be examined. Using the behavior
of this ideal as a standard for comparison, the behavior of radiative
energy for conditions of interest to the engineer will be discussed in
succeeding chapters.

* For metals the index of refraction is a complex quantity of which n is only the real part. In this case n can be less than
unity which at first glance might convey the impression that the propagation speed in metals is greater than co. This is not
the case; the imaginary part of the complex index must also be considered and this part is greater than unity. A detailed
di is given in ch




Chapter 2. Radiation from a Blackbody

Before discussing the idealized concept of the blackbody, let us
examine a few aspects of the interaction of incident radiant energy with
matter. The idea we are concerned with is that the interaction at the
surface of a body is not the result of only a surface property but depends
as well on the bulk material beneath the surface.

When radiation is incident on a homogeneous body, some of the radia-
tion is reflected and the remainder penetrates into the body. The radiation
may then be absorbed as it travels through the medium. If the material
thickness required to substantially absorb the radiation is large com-
pared with the thickness dimension of the body or if the material is
transparent, then most of the radiation will be transmitted entirely
through the body and will emerge with its nature unchanged. If, on the
other hand, the material is a strong internal absorber the radiation that
is not reflected from the body will be converted into internal energy
within a very thin layer adjacent to the surface. A very careful distinction
must be made between the ability of a material to let radiation pass
through its surface and its ability to internally absorb the radiation after
it has passed into the body. For example, a highly polished metal will
generally reflect all but a small portion of the incident radiation, but the
radiation passing into the body will be strongly absorbed and converted
to internal energy within a very short distance within the material. Thus
the metal has strong internal absorption ability, although it is a poor
absorber for the incident beam since most of the incident beam is re-
flected. Nonmetals may exhibit-the opposite tendency. Nonmetals may
allow a substantial portion of the incident beam to pass into the material,
but a larger thickness will be required than in the case of a metal to
internally absorb the radiation and convert it into internal energy.
When all the radiation that passes into the body is absorbed internally,
the body is called opagque.

If metals in the form of very fine particles are deposited on a sub-
surface, the result is a surface of low reflectivity. This combined with
the high internal absorption of the metal causes this type of surface to
be a good absorber. This is the basis for formation of the metallic
“blacks” such as platinum or gold black.

295-763 OL-68—2
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2.1 SYMBOLS
A surface area
C,, C, constants in Planck’s spectral energy distribution (see table
IV of the appendix)
Cs constant in Wien’s displacement law (see table IV of the
appendix)
c speed of light in medium other than a vacuum
Co speed of light in vacuum
E energy emitted per unit time
e emissive power
Fo_x fraction of total blackbody intensity or emissive power lying
in spectral region 0—A
h Planck’s constant
i radiant intensity
k Boltzmann constant
n refractive index
Q rate of energy
r radius
T absolute temperature
B azimuthal, or cone angle (measured from normal of surface)
e the quantity Co/AT
n wave number
6 circumferential angle
K extinction coefficient for electromagnetic radiation
A wavelength in vacuum
Am wavelength in medium other than a vacuum
v frequency
Lo Stefan-Boltzmann constant (eq. (2—22))
w solid angle
S'uperscript:
directional heat flow quantity
Subsecripts:
b blackbody
max corresponding to maximum energy
n normal direction
p projected
s sphere
n wave number dependent
A spectrally (wavelength) dependent
AN in wavelength span A; to A2
AT evaluated at AT
v frequency dependent
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2.2 DEFINITION OF A BLACKBODY

A blackbody is defined as an ideal body that allows all the incident
radiation to pass into it (no reflected energy) and absorbs internally all
the incident radiation (no transmitted energy). This is true of radiation
for all wavelengths and for all angles of incidence. Hence the blackbody
is a perfect absorber of incident radiation. All other qualitative aspects
of blackbody behavior can be derived from this definition.

The concept of a blackbody is basic to the study of radiative energy
transfer. As a perfect absorber, it serves as a standard with which real
absorbers can be compared. As will be seen, the blackbody also emits
a maximum energy and hence serves as an ideal standard of comparison
for a body emitting radiation. The radiative properties of the ideal
blackbody have been well established by use of quantum theory, and
have been verified by experiment.

Only a few surfaces such as carbon black, carborundum, platinum
black, and gold black approach the blackbody in their ability to absorb
radiant energy. The blackbody derives its name from the observation
that good absorbers of incident visible light do indeed appear black to
the eye. However, except for the visible region the eye is not a good
indicator of absorbing ability in the wavelength range of thermal radia-
tion. For example, a surface coated with white oil paint is a very good
absorber for infrared radiation emitted at room temperature, although
it is a poor absorber for the shorter wavelength region characteristic of
visible light.

2.3 PROPERTIES OF A BLACKBODY

Aside from being a perfect absorber of radiation, the blackbody has
other important properties, which will now be discussed.

2.3.1 Perfect Emitter

Consider a blackbody at a uniform temperature placed within a
perfectly insulated enclosure of arbitrary shape whose walls are also
composed of blackbodies at some uniform temperature initially different
from that of the enclosed blackbody (fig. 2—1). After a period of time, the
blackbody and the enclosure will attain a common uniform equilibrium
temperature. In this equilibrium condition, the blackbody must radiate
exactly as much energy as it absorbs. To prove this, consider what would
happen if the incoming and outgoing amounts of radiation were not
equal. Then the enclosed blackbody would either increase or decrease
in temperature. This would involve a net amount of heat transferred from
a cooler to a warmer body which is in violation of the second law of ther-
modynamics. It follows then that because the blackbody is by definition
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absorbing the maximum possible radiation from the enclosure at each
wavelength and from each direction, it must also be emitting the maxi-
mum total amount of radiation. This is made clear by considering any
less-than-perfect absorber, which must emit less energy than the
blackbody to remain in equilibrium.

~Enclosure at uniform temperature

_~ Blackbody at uni-
form temperature

>~-Surface element exchanging radiant
energy with the blackbody

FIGURE 2-1.—Enclosure geometry for derivation of blackbody properties.

2.3.2 Radiation Isotropy in a Black Enclosure

Now consider the isothermal enclosure with black walls and arbitrary
shape shown in figure 2-1, and move the blackbody to another position
and rotate it to another orientation. The blackbody must still be at the
same temperature because the whole enclosure remains isothermal.
Consequently, the blackbody must be emitting the same amount of
radiation as before. To be in equilibrium, the body must still be receiving
the same amount of radiation from the enclosure walls. Thus, the total
radiation received by the blackbody is independent of body orientation
or position throughout the enclosure; therefore, the radiation traveling
through any point within the enclosure is independent of position or
direction. This means that the black radiation filling the enclosure is
isotropic.
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In addition to emitting the maximum possible total radiation, the
blackbody emits the maximum possible energy at each wavelength and
in each direction. This is shown by the following arguments:

2.3.3 Perfect Emitter in Each Direction

Consider an area element on the surface of the black isothermal en-
closure and an elemental blackbody within the enclosure. Some of the
radiation from the surface element strikes the elemental body and is at
an angle to the body surface. All this radiation, by definition, is absorbed.
In order to maintain thermal equilibrium and isotropic radiation through-
out the enclosure, the radiation emitted back into the incident direction
must equal that received. Since the body is absorbing the maximum
radiation from any direction, it must be emitting the maximum in any
direction. Furthermore since the black radiation filling the enclosure is
isotropic, the radiation received or emitted in any direction by the
enclosed black surface, per unit projected area normal to that direction,
must be the same.

2.3.4 Perfect Emitter at Every Wavelength

Consider a blackbody inside an enclosure with the whole system in
thermal equilibrium. The enclosure boundary is specified as being of a
very special type—it emits and absorbs radiation only in the small
wavelength interval d\, around A,. The blackbody, being a perfect
absorber, absorbs all the incident radiation in this wavelength interval.
To maintain the thermal equilibrium of the enclosure, the blackbody
must reemit radiation in this same wavelength interval; the radiation can
then be absorbed by the enclosure boundary which only absorbs in this
particular wavelength interval. Since the blackbody is absorbing a
maximum of the radiation in d\,, it must be emitting a maximum in
d\i. A second enclosure can now be specified that only emits and ab-
sorbs in the interval d\; around A.. The blackbody must then emit a
maximum at the wavelength A,. In this manner the blackbody is shown
to be a perfect emitter at each wavelength. The special nature of the
enclosure assumed in this discussion is of no significance relative to
the blackbody, because the emissive properties of a body depend only
on the nature of the body and are independent of the enclosure.

2.3.5 Total Radiation a Function Only of Temperature

If the enclosure temperature is altered, the enclosed blackbody
temperature must adjust and become equal to the new enclosure temper-
ature (i.e., the complete isolated system must tend toward thermal
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equilibrium). The system will again be isothermal, and the absorbed and
emitted energy of the blackbody will again be equal to each other al-
though the magnitude differs from the value for the previous enclosure
temperature. Since by definition the body absorbs (and hence emits)
the maximum amount corresponding to this temperature, the character-
istics of the surroundings do not affect the emissive behavior of the
blackbody. Hence, the total radiant energy emitted by a blackbody
is a function only of its temperature.

Further, the second law of thermodynamics forbids net energy transfer
from a cooler to a hotter surface without doing work on the system. If the
radiant energy emitted by a blackbody increased with decreasing
temperature, we could easily build a device to violate this law. Consider,
for example, the infinite parallel black plates shown in figure 2-2. The
upper plate is held at temperature T}, which is higher than the tempera-

FIGURE 2-2. —Device violating second law of thermodynamics.

ture T of the lower plate. If the emission of energy decreased with
increasing temperature, then the energy emitted per unit time by plate 2,
E., is larger than that emitted by plate 1, Ei. Because the plates are
black, each absorbs all energy emitted by the other. To maintain the
temperature of the plates, an amount of energy Q1=E,— E\ must be
extracted from plate 1 per unit time and an equal amount added to
plate 2. Thus, we are transferring net energy from the colder to the
warmer plate without doing external work. Experience as embodied in
the second law of thermodynamics says that this cannot be done. There-
fore, the radiant energy emitted by a blackbody must increase with
temperature.

From these arguments, the total radiant energy emitted by a black-
body is expected to be proportional only to a monotonically increasing
function of temperature.
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2.4 EMISSIVE CHARACTERISTICS OF A BLACKBODY
2.4.1 Definition of Blackbody Radiation Intensity 3 -

Consider an elemental surface area d4 surrounded by a hemisphere
of radius r as shown in figure 2—-3. A hemisphere has a surface area of
27rr® and subtends a solid angle of 27 steradians (sr) about a point at

FIGURE 2-3. - Spectral emission intensity from black surface.

the center of its base. Hence, by considering a hemisphere of unit
radius, the solid angle about the center of the base can be regarded di-
rectly as the area on the unit hemisphere. Direction is measured by the
angles 6 and B as shown in figure 2-3, where the angle B8 is measured
from the direction normal to the surface. The angular position for =0
is arbitrary.

The radiation emitted in any direction will be defined in terms of
the intensity. There are two types of intensities: the spectral intensity
refers to radiation in an interval d\ around a single wavelength, while

3 The system of units and definition of terms used here have been made as self- i as possible to avoid fusi
This is not true for all areas of radiation, where separate interests and needs have caused a great variety of inconsistent
systems of units and definitions to be used. A good example of this was provided to the authors by Dr. Fred Nicodemus,
who sent a data sheet used in the field of ophthalmology to define units of lumi Enough is probably pro-
vided by the following equality taken from the data sheet:

1 nit=3.14 apostilb = 10* Bougie-Hectométre-Carré = 2.919 foot-lambert.
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the total intensity refers to the combined radiation including all wave-
lengths. The spectral intensity of a blackbody will be given by ixs(N).
The subscripts denote, respectively, that one wavelength is being con-
sidered and that the properties are for a blackbody. The prime denotes
that radiation in a single direction is being considered. The notation is
explained in detail in chapter 3, section 3.1.2. The spectral intensity is
the energy emitted per unit time per unit small wavelength interval
around the wavelength A, per unit elemental projected surface area
normal to the (B, 6) direction and into a unit elemental solid angle cen-
tered around the direction (8, 8). As will be shown in section 2.4.2 the
blackbody intensity defined in this way (i.e., on the basis of projected
area) is independent of direction; hence, the symbol for blackbedy
intensity is not modified by any (B8, 8) designation. The total intensity
i, is defined analogously to i, except that it includes the radiation for
all wavelengths: hence, the subscript A and thé functional dependence
(\) do not appear. The spectral and total intensities are related by the
integral over all wavelengths

i,= fx:u RENTIN 2-1)

24.2 Angular Independence of Intensity

The angular independence of the blackbody intensity can be shown
by considering a spherical isothermal blackbody enclosure of radius r
with a blackbody element d4 at its center, as shown in figure 2—4(a).
Once again, the enclosure and the central elemental body are in thermal
equilibrium. Thus, all radiation in transit throughout the enclosure
must be isotropic. Consider radiation in a wavelength interval d\ about
A that is emitted by an element d4; on the enclosure surface and travels
toward the central element d4 (fig. 2—4(b)). The emitted energy in this
direction per unit solid angle and time is i), , (A\)d4sd\. The normal
spectral intensity of a blackbody is used because the energy is emitted
normal to the black wall element dA4; of the spherical enclosure. The
amount of energy per unit time that impinges upon d4 depends on the
solid angle that d4 occupies when viewed from the location of dA;.
This solid angle is the projected area of d4 normal to the (8, 6) direction
divided by r2. The projected area of d4 is

dA,=dA cos B (2-2)
Then the energy absorbed by d4 is

’ ! ———d/4
Q30N B.0) = i3y, (V) dAsr F2E22E

(2-3)
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7~ Spherical
/ black enclosure

Black ele-

ment dJA— "

(c)

(a) Black element d4 within black (b) Energy transfer  (c) Energy transfer
spherical enclosure. from dA, to dA,. from dA, to dA,.

FIGURE 2—4. —Energy exchange between element of enclosure surface and element within
enclosure.

The energy emitted by d4 in the (B, 0) direction and incident on dA,
(fig. 2-4(c)) must be equal to that absorbed from dA,, or equilibrium
would be djsturbed; hence,

. dA, , ., dA
B0 B,y THAN= QLN 8. 0) =),y (Nt LB gy (2

r2

Then, by virtue of equation 2-2),
ixo (X, B, 8) =iip, n(\) # function of B, 0 (2-5)

Equation (2-5) shows that the intensity of radiation from a blackbody,
as defined here on the basis of projected area, is independent of the
direction of emission. Neither the subscript n nor the (8, 9) notation is
really needed for complete description of the black intensity. Since
the blackbody is always a perfect absorber and emitter, these properties
of the blackbody are independent of its surroundings. Hence, these
results are independent of both the assumptions used in the derivation
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of a spherical enclosure and thermodynamic equilibrium with the
surroundings.?

2.4.3 Blackbody Emissive Power— Definition and Cosine Law Dependence

The intensity has been defined on the basis of projected area. Itis
useful also to define a quantity which gives the energy emitted in a given
direction per unit of actual (unprojected) surface area. This is defined as
e\, B, 6) which is the energy emitted by a black surface per unit time
within a unit small wavelength interval centered around the wavelength
A, per unit elemental surface area and into a unit elemental solid angle
dw centered around the direction (8, 6). The energy in the wavelength
interval d\ centered about A emiited per unit time in any direction
Qs(\, B, 0) can then be expressed in the two forms

QN B, 0) =e (A, B, 0)dAdwdh=1},(N\)dA cos B dwd\
Consequently, there exists the relation
ex(N, B, 0) =15,(N) cos B=e}, (X, B) (2-6)

It is evident from the i},(A) cos 8 term in equation (2-6) that e},(A, B, )
does not depend on 6 and hence can be expressed as e),(\, B). The
quantity ej,(\, B) is called the directional spectral emissive power for a
black surface. In the case of some nonblack surfaces, there will be a
dependence of e, on angle 6.

Equation (2-6) is known as Lambert’s cosine law, and surfaces having
a directional emissive power that follows this relation are known as
“diffuse” or “cosine law” surfaces. A blackbody, because it is always
a diffuse surface, serves as a standard for comparison with the direc-
tional properties of real surfaces that do not, in general, follow the
cosine law.

41t should be noted that some exceptions do exist for most of the blackbody “laws” presented in this chapter. The
exceptions are of minor importance in almost any practical engineering situation but need to be considered when ex-
tremely rapid transients are present in a radiative transfer p If the transient period is of the order of the time scale
of whatever process is governing the emission of radiation from the body in question, then the emission properties of
the body may lag the absorption properties. In such a case, the concepts of temperature used in the derivations of the
blackbody laws no longer hold rig ly. The t t of such probl is ide the scope of this work.
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2.4.4 Hemispherical Spectral Emissive Power of a Blackbody

In calculations of total radiant energy rejection by a surface, there is
needed the spectral emissive power integrated over all solid angles of a
hemispherical envelope placed over a black surface. This quantity is
called the hemispherical spectral emissive power of a black surface exs(A).
It is the energy leaving a black surface per unit time per unit area and per
unit wavelength interval around A. Figure 2-5 shows the elemental area
dA at the center of the base of a unit hemisphere. By definition, a solid

e'\g\.B)

sin f 0

FIGURE 2-5.—Unit hemisphere used to obtain relation between blackbody intensity and
hemispherical emissive power.

angle anywhere above dA is equal to the intercepted area on the unit
hemisphere. An element of this hemispherical area is given by

dw=sin 8 dBd0

Hence, the spectral emission from d4 per unit time and unit surface area
passing through the element on the hemispherical area is given by

e (X, B) sin B dBd6
By virtue of equation (2-6), this is equal to
ew(\, B)dw=1i,,(\) cos 8 sin B dBdO 2-7)

To obtain the blackbody emission passing through the entire hemi-
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sphere, equation (2-7) is integrated over all solid angles to give

exs(N) =iy, (N\) L: LZ/: cos B sin B dBd6 (2-8a)

or

exo(N) =2 Ly (A) f 0’ sin 8 d(sin B) = i}, (\) (2-8b)

where the prime notation is absent in the designation of the hemispheri-
cal quantity. Also from equation (2-6), when the emission is normal to
the surface (8=0) so that cos =1,

e, n(N) =il (M)

and, from equation (2-8b),
exs(N) =mess, n(N) 2-9)

Hence, purely from the geometry involved, this simple relation is found:
The blackbody hemispherical emissive power is w times the directional
emissive power normal to the surface or m times the intensity. This
relation will prove to be very useful in relating directional and hemi-
spherical quantities in following chapters.

2.4.5 Spectral Emissive Power Through a Finite Solid Angle

Sometimes the emission through only part of the hemispherical solid
angle enclosing an area element may be desired. The emission through
the solid angle extending from B, to 8z and 6, to 6, is found by modifying
the limits of integration in equation (2—8a)

62 (B2
e’\b()"31_32’01_02):5)'\1;()‘)J; L cos B sin BdBdo

=i},(A) (Sm'ﬂz;sm- B (6,—6,) (2-10)
2.46 Spectral Distribution of Emissive Power

Some of the blackbody characteristics that have been discussed are:
The blackbody is defined as a perfect absorber and is also a perfect
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emitter. Its spectral intensity and therefore its spectral emissive power
are only functions of the temperature of the blackbody. The emitted
blackbody spectral energy follows Lambert’s cosine law.

All these blackbody properties have been demonstrated by thermo-
dynamic arguments. However, a very important fundamental property
of the blackbody remains to be presented. This is the formula that
gives the magnitude of the emitted energy at each of the wavelengths
that comprise the radiation spectrum. This relation cannot be obtained
from purely thermodynamic arguments. Indeed, the search for this
formula led Planck to investigation and hypothesis that became the
foundation of quantum theory. The derivation of the spectral distribution
is beyond the scope of interest of the present discussion. Therefore
the results will be presented here without derivation. The interested
reader may consult various standard physics texts (refs. 1 to 3) for the
complete development.

It has been shown by the quantum arguments of Planck (ref. 4) and
verified experimentally that for a blackbody the spectral distributions of
hemispherical emissive power and radiant intensity in a vacuum are
given as a function of absolute temperature and wavelength by

27TC1

exn(N) =iy, (N) =:5—(;C”T_T)

(2-11a)

This is known as Planck’s spectral distribution of emissive power. As
will be shown later, for radiation into a medium where the speed of light
is not close to ¢,, equation (2-11a) must be modified by including index
of refraction multiplying factors (see section 2.4.12). For most engineer-
ing work, the radiant emission is into air or other gases with an index of
refraction so close to unity that equation (2-1la) is applicable. The
values of the constants C, and C, are given in table IV of the appendix
in two common systems of units. These constants are equal to Ci=hc
and C;=hco/k where h is Planck’s constant and k is the Boltzmann
constant.> ¢ Equation (2-11a) is of great importance as it provides quan-
titative results for the radiation from a blackbody.

EXAMPLE 2-1: A plane black surface is radiating at a temperature
of 1500° F. What is the directional spectral emissive power of the
blackbody at an angle of 60° from the normal and at a wavelength of
6 um?

*h=6.625X 10-*" (erg) (sec) and k=1.380 X 10-* erg/°K.
¢ In some literature, the constant C, is defined as 27rhc:.
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From equation (2-11a),

i1,(6 wm)= 2% 0.1889 X 10.8 (Btu) (um)*/(hr) (sq ft)
65(‘Lm)5 (625898/6X 1960 1) (Sr)

Btu

=606 {55 (st 1) (o) (50

From equation (2—6) the directional emissive power is

3 Btu
(hr) (sq ft) (um) (s1)

e}, (6 pm, 60°) = 606 cos 60°= 30

Alternate forms of equation (2-11a) are sometimes employed where
frequency or wave number is used rather than wavelength. The use of
frequency has an advantage when radiation travels from one medium
into another, as in this instance the frequency remains constant while
the wavelength changes because of the change in propagation velocity.
To make the transformation of equation (2-11a) to frequency, note
that in vacuum A=c,/v, and hence dA=— (c,/v?)dv. Then the hemi-
spherical emissive power in the wavelength interval d\ becomes

. 3
e (\)dr = —2TCdh __ —2mCwidv__ (g (911

A5 (eC:AT—1) T ci(eCavicoT — 1)—

The quantity e, (v) is the emissive power per unit frequency about v.
The wave number n=1/\ is the number of waves per unit length.
Then

1
d)\:-—-’r');d'ﬂ

and

2rCimd
exb(A)dk=——(£w+Tn__'lnjf_—_€vb(n)dT) 2-11c)

The quantity ens(n) is the emissive power per unit wave number about m.

To understand better the implications of equation (2-11a), it has been
plotted in figure 2-6. Here the hemispherical spectral emissive power
is given as a function of wavelength for several different values of the
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FIGURE 2-6.—Hemispherical spectral emissive power of blackbody for several different
temperatures.

absolute temperature. One characteristic that is quite evident is that
the energy emitted at all wavelengths increases as the temperature
increases. It was shown in section 2.3.5, and it is known from common
experience that the total (including all wavelengths) radiated energy
must increase with temperature; the curves show that this is also true



24 THERMAL RADIATION HEAT TRANSFER

for the energy at each wavelength. Another characteristic is that the
peak spectral emissive power shifts toward a smaller wavelength as
the temperature is increased. A cross plot of figure 2-6 giving energy
as a function of temperature for fixed wavelengths shows that the energy
emitted at the shorter wavelength end of the spectrum increases more
rapidly with temperature than the energy at the long wavelengths.

The position of the range of wavelengths included in the visible spec-
trum is included in figure 2-6. For a body at 1000° R only a very small
amount of energy would be in the visible region and would not be suf-
ficient to be detected by eye. Since the curves at the lower tempera-
tures slope downward from the red toward the violet end of the spectrum,
as the temperature is raised the red light becomes visible first.” Higher
temperatures make visible additional wavelengths of the visible light
range, and at a sufficiently high temperature the light emitted becomes
white, representing radiation composed of a mixture of all the visible
wavelengths.

For the filament of an incandescent lamp to operate efficiently, the
temperature must be high, otherwise too much of the elecirical energy
would be dissipated as radiation in the infrared region rather than in
the visible range. Most tungsten filament lamps operate at about 5400° R,
and thus do give off a large fraction of their energy in the infrared, but
their filament vaporization rate limits the temperature to near this value.
The Sun emits a spectrum quite similar to that of a blackbody at a tem-
perature of about 10000° R, and an appreciable amount of energy re-
lease is in what we sense as the visible region. This may be because
evolution has caused the eye to be most sensitive in the spectral region
of greatest energy. If the eye were sensitive in other regions (for ex-
ample, the infrared so that we could see thermal images in the “dark”),
our definition of the “visible region of the spectrum” would change. If
man finds life in other solar systems, where the Sun has an effective
temperature different from ours, it will be interesting to discover what
wavelength range encompasses the “visible specirum” if the beings
there possess sight.

Equation (2-11a) can be placed in a more convenient form that elimi-
nates the need for providing a separate curve for each value of 7. This
is done by dividing by the fifth power of temperature to give

exw(A, T) =7Ti)’\b(.\, T) _ 27wC,
T 5 (AT)3(eC/M—1)

(2-12)

This equation gives the quantity ex»(\, T)/T® in terms of the single vari-

7This occurs at the so-called Draper point of 977° F (ref. 5), at which red light first becomes visible from a heated
object in darkened surroundings.
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FIGURE 2-7.—-Spectral distribution of blackbody hemispherical emissive power.

able AT. A plot of this relation is given in figure 2-7 and replaces the
multiple curves in figure 2—6. A compilation of values is presented in
table V of the appendix.

EXAMPLE 2-2: For a blackbody at 1500° R what is the spectral hemi-

spherical emissive power at a wavelength of 2 um? Use table V of the
appendix.

The value of AT is 3000 (um)°R). From table V, at this AT, e\/T>
=87.047 X 10~'* Bru/(hr)(s q ft)(um)(°R)5. Then ey(2 wm)=87.047 X 10-15
(1500)3= 661 Btu/(hr)(sq ft)(xm).

2.4.7 Approximations for Spectral Distribution

Planck’s spectral distribution gives the maximum (blackbody) inten-
sity of radiation which any body can emit at a given wavelength for a

295-763 OL-68-—3
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given temperature. This intensity serves as an optimum standard with
which real surface performance can be compared. In chapter 3, the
methods of comparison will be defined. Planck’s distribution also pro-
vides a means to evaluate the maximum radiative performance that can
be attained for any radiating device.

Some approximate forms of Planck’s distribution are occasionally
useful because of their simplicity. Care must be taken to use them only
in the range where their accuracy is acceptable.

2.4.7.1 Wien’s formula.—1If the term eC2AT is much larger than 1, equa-
tion (2-12) reduces to

i\, T) 2C,
s = (2-13)

which is known as Wien’s formula. It is accurate to within 1 percent for
AT less than 5400 (xm)(°R).

24.72 Rayleigh-Jeans formula.— Another approximation is found by
taking the denominator of equation (2-12) and expanding it in a series
to give

v G 1/C: 1 cz>3
IO PR LS SR Iy (01 W L SR L
e =1 1+AT+2!<)\T) Y (AT + (2-14)

For AT much larger than C, this series can be approximated by the single
term C3/AT, and equation (2-12) becomes

(L T) 26 1
5 C: (\D)*

(2-15)

This is known as the Rayleigh-Jeans formula and is accurate to within
1 percent for AT greater than 14 X 10° (um)(°R). This is well outside the
range generally encountered in thermal radiation problems, since a
blackbody emits over 99.9 percent of its energy at AT values below this.
The formula has utility for long-wave radiation of other classifications,
such as radio waves.

A comparison of these approximate formulae with the Planck distri-
bution is shown in figure 2-7.

248 Wien's Displacement Law

Another quantity of interest with regard to the blackbody emissive
spectrum is the wavelength Apay at which the emitted energy is a max-
imum for a given temperature. This maximum shifts toward shorter
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wavelengths as the temperature is increased, as shown by the dotted
line in figure 2—6. The value of ApyaT can be found at the peak of the
distribution curve given in figure 2-7. Alternately it can be found ana-
lytically by differentiating Planck’s distribution from equation (2-12)
and setting the left side equal to zero. This gives the transcendental
equation

. C 1
Amaxl= 2" (———j) : (2-16)

1 —e~C2/Amax
The solution to this equation is of the form
AmaxT'=Cy (2-17)

which is one form of Wien’s displacement law. Values of the constant
C; are given in table IV of the appendix. Equation (2-17) indicates that
the peak emissive power and intensity shift to a shorter wavelength at
a higher temperature in inverse proportion to T.

EXAMPLE 2-3: For a blackbody to radiate its maximum energy at
the center of the visible spectrum what would its temperature have to be?

Figure 1-2 shows the visible spectrum spans the range 0.4 to 0.7 um,
and the center of the range is at 0.55 um. From equation (2-17)

_ G 5216 (um)°R) R
T3 =" 058 g = 480" R

This is close to the effective surface temperature of the Sun.

2.49 Total Intensity and Emissive Power

The previous discussion has provided the energy per unit wavelength
interval that a blackbody radiates at each wavelength. It will now be
shown how the total intensity of radiation, which includes the radiation
for all wavelengths, can be determined. The result is a surprisingly
simple relation.

The energy emitted over the small wavelength interval d\ is given by
i\,(N)d\. Integrating the spectral intensity over all wavelengths from
A=0 to A= gives the total intensity

= f (V) dA (2-18)
1]

This integral may be evaluated by substitution of Planck’s distribution
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from equation (2-12) and a transformation of variables in terms of

{=C./A\T. Equation (2-18) then becomes

L[ 2
"7 N e T

[ @ o (&) ()6

ZC T“ 9_
= f (ei—l) (2-19)

From a table of integrals (ref. 6), this can be evaluated as

d\

., _2C:T*7*
b="Cs 15 (2-20)
Defining a new constant results in
., O
=2 T" 2-21)
where the constant is
26177'5 Btll
= =(. 2%108 —mMm8mM8M8Mm—— —
7= 153 0.1712x 10 (hD(sq MCRY (2-22)
The hemispherical total emissive power of a surface is then
eb=ﬁ eu)()\)d)\-——ﬁ) i, (N)dA=coT* (2-23)

which is known as the Stefan-Boltzmann law, where o is the Stefan-
Boltzmann constant. The value of o as determined experimentally
differs slightly from that calculated by equation (2-22). This is indicated
in table IV of the appendix.

EXAMPLE 2-4: The beam emitted normal to a blackbody surface is
found to have a total radiation per unit solid angle and per unit surface
area of 3000 Btu/(hr)(sq ft)(sr). What is the surface temperature?

The hemispherical total emissive power is related to the total emis-
sive power in the normal direction by e»= ey, »- Hence, from equation
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(2-23) T= (mep, u/o)V4= (30007/0.173 X 10-8)14=1528° R. The experi-
mental value of the Stefan-Boltzmann constant has been used.

EXAMPLE 2-5: A black surface is radiating with a hemispherical total
emissive power of 2000 Btu/(hr)(sq ft). What is the surface temperature?
At what wavelength is its maximum spectral emissive power?

From the Stefan-Boltzmann law, the temperature of the blackbody is
T= (ep/or)"?= (2000/0.173 X 10-8)"4=1037° R. Then from Wien’s dis-
placement law, Ao = C3/T=5216/1037 = 5.04 am.

2.4.10 Behavior of Maximum Intensity with Temperature

The spectral intensity of a black surface i},(A) was shown in equation
(2-5) to be independent of the angle of emission. Integrating over all
wavelengths of course did not change this angular independence.

The intensity of a surface is what the eye interprets as “brightness.”
The Sun, which radiates with a spectral distribution of intensity similar
to that of a blackbody at 10000° R, appears equally bright across its
surface to the unaided eye. The Sun thus gives qualitative experimental
verification that the intensity is indeed invariant with direction of emis-
sion, because the radiation reaching us from the center of the solar disk
was emitted normal to the surface, while that from the edge was emitted
at nearly 90° to the normal.

The intensity at a given wavelength is found from Planck’s spectral
distribution. It is interesting to note that substitution of Wien’s displace-
ment law (eq. (2-17)) into equation (2-12) gives

§ 2C
Umaxd = r [Cg(e('zl(‘; — 1)] (2-24)

This shows that the maximum intensity increases as temperature to the
fifth power. Indeed, because ix,/T* is a function only of AT as shown by
equation (2-12), it is evident that if the blackbody temperature is
changed from T to T, and at the same time the wavelengths A, and A,
are chosen such that ATy = AT, the value of i5,/T® remains unchanged.
Therefore, the intensity at A, for temperature T: increases as tempera-
ture to the fifth power from the value at \, for temperature 7. This is the
general statement of Wien’s law.

2.4.11 Blackbody Radiation in o Wavelength Interval

The Stefan-Boltzmann law shows that the hemispherical total emissive
power of a blackbody is given by
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eb=f exw(N)dA=0oT"
[H

It is often desirable in calculations of radiative exchange to determine
the fraction of the total emissive power that is emitted in a given wave-

_~ Distribution for
blackbody temperature T

v

~ Band emission
for interval A - A

~ Emission under
/7 er]rzire curve,
1}

Hemispherical spectral emissive power, e)‘b()\, i}

Wavelength, A

FI1GURE 2-8.— Emitted energy in wavelength band.

length band as illustrated by figure 2-8. This fraction is designated by
F\,-», and is given by the ratio

XZ
J;, (Y] ( )\) d\ 1 f)\

" exo(A)dA (2-25)

Frou,=%———"="m

£ = "4
j e)‘b(A)d)\ oT

0

Ay

The last integral in equation (2-25) can be expressed by two integrals
each beginning at A=0

1 Az Ay
Fm—xFﬁ;U; em()\)dh—J; exb(h)dk]=Fo—xr‘Fo—x.
(2-26)

The fraction of the emissive power for any wavelength band can there-
fore be found by having available the values of Fo_) as a function A.
The Fo_», function is illustrated by figure 2-9(a) where it would equal
the crosshatched area divided by the total area (shaded) under the curve.
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A D

eypfh, TVT

Wavelength-temperature product, AT

(a) In terms of curve for specific temperature. Entire area under curve, oT%.
(b) In terms of universal curve. Entire area under curve, o.

FIGURE 2—9. —Physical representation of F factor, where Fo_x, or Fo_,r is ratio of cross-
hatched to shaded area.

For a blackbody, because of the simple manner in which the hemi-
spherical emissive power is related to the intensity (eq. (2-8b)) the F -,
function also gives the fraction of the intensity which lies in the wave-
length interval A; — X,. Since ey, depends on T, the application of equa-
tion (2-26) would require that Fy_, be tabulated for each T. There is
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no need to have this complexity, however, as it is possible to arrange
the F function in terms of only the single variable AT, figure 2-9(b). In
this way a universal set of F values is obtained that can apply for all
temperatures and wavelengths. The universal form is found by re-
writing equation (2-26) as

1 [ (AT AT N
FMT—Asza‘. U:) eM’]SsA) d(AT) “_L ebe# d(kT)] = Fo-xgr—Fo-nr

(2-27)

As shown by equation (2-12), exs/T? is only a function of AT so that the
integrands in equation (2-27) are only dependent on the AT variable.
The Fo_xr values are given in table V of the appendix and a plot of
Fo_\r as a function of AT is shown in figure 2-10.
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1448 2898| 4108 6 149 23220 AT, (um)(°K) )
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{ Loty bl I B
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FIGURE 2-10. —Fractional blackbody emissive power in range 0 to AT.
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For calculations involving desired accuracy of greater than 1 percent,
it should be noted that the values of Fo_,r in table V were computed
using the constants C; and C; of table IV of the appendix. The value of
o, the Stefan-Boltzmann constant, which corresponds to these C; and
C; values is the calculated value shown in table IV. This calculated o
should be used to determine the total energy quantities that are to be
multiplied by the F factors to obtain the energy in a wavelength interval.
Use of the experimental value for o introduces an error of slightly less
than 1 percent because of the inconsistency of the experimental o with
the one used in equation (2-27) to obtain table V.

The tabulated Fo_xr values are also available in expanded form for
use where even greater accuracy is required. The tables of Pivovonsky
and Nagel (ref. 7), for example, tabulate values for every AT interval of
10 (um)(°K) over a very wide range of AT.

Polynomial approximation expressions for Fo_,r are also available
and are included in the appendix.

The compilation of values of Fy_\s has a number of uses as illustrated
in the following examples.

EXAMPLE 2-6: A blackbody is radiating at a temperature of 5000° R.
An experimenter wishes to measure the total radiant emission by use
of a radiation detector. This detector absorbs all radiation in the X range
0.8 to 5 um, but detects no energy outside that range. What percentage
correction will the experimenter have to apply to his energy measure-
ment? If the sensitivity of the detector could be extended in range by
0.5 um at only one end of the sensitive range, which end should be
extended?

Taking \T=0.8 X5000=4000 (um)(°R) and A.T=75 x 5000= 25 000
(um)(°R) results in the fraction of energy outside the sensitive range
being

Fo._)‘l’r“f' szr_w =F0—)\,’I‘+ (l _FO—}\,T) = (01050+ l - 09621) = 01429

or a correction of 14.3 percent of the total incident energy. Extending
the sensitive range to the longer wavelength side of the measurement
interval adds little accuracy because of the small slope of the curve
of F against AT in that region, so extending to shorter wavelengths would
provide the greatest increase in detected energy.

EXAMPLE 2-7: The experimenter of the previous example has designed
a radiant energy detector which can only be made sensitive over any
1-um range of wavelength. He wants to measure the total emissive power
of two blackbodies, one at 5000° and the other at 10 000° R. He plans to
adjust his 1-um interval to give a 0.5-um sensitive band on each side of



34 THERMAL RADIATION HEAT TRANSFER

the peak blackbody emissive power. For which blackbody should he
expect to detect the greatest percentage of the total emissive power?
What will the percentage be in each case?

Wien’s displacement law tells us that the peak emissive power will
occur at Amax= (5216/T) pm in each case. Because for the higher
temperature a wavelength interval of 1 um will give a wider spread of
AT values around the peak of ApaxT on the normalized blackbody curve
(hg. 2-7), the measurement should be more accurate for the 10000° R
case. For the 10000° R blackbody, Amax = 0.5216 um, and A\, T= (0.5216
~0.5000) X 10000=216 (um)°R). Similarly, A.T=1.0216X 10000
=10216 (um)°R). The percentage of detected emissive power is then

]OO(F0_10 216 — F0—216) =100 X (0708 - 0) =70.8 percent

A similar calculation for the 5000° R blackbody shows that 51.7 percent
of the emissive power is detected.

Some commonly used values of Fo_xr are given in table 2-1. Tt is
interesting to note that exactly one-fourth of the total emissive power

TaBLe 2-1.—FRACTION OF BLACKBODY
EmissioN CONTAINED IN THE RANGE

0—AT
AT
FO—AT
(um) (°R) (um) (°K)

2 606 1448 0.01

5216 =AmaxT 2898 25

7394 4108 .50
11069 6149 .75
41800 23 220 .99

lies in the wavelength range below the peak of the Planck spectral
distribution at any temperature. This relation appears to have no simple
physical explanation and must be put down alongside those other
phenomena such as gravitational attraction and the Stefan-Boltzmann
fourth power law in which nature provides us with a simple law to de-
scribe an apparently complex event.
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2.4.12 Blackbody Emission in a Medium Other Than a Vacuum

The previous expressions for blackbody emission have been for
emission into a vacuum. When emission is considered from a location
within a large volume of medium other than a vacuum, the quantities
Ci and C; appearing in Planck’s energy distribution equation (eq. (2-11a))
should be replaced by the quantities

Ci=he? (2—28a)
C:=hclk (2-28b)

so that
expp(Am) dAm= 276 (2-29)

N (eCrmT—1)

where £ is the Boltzmann constant, 4 is Planck’s constant, ¢ is the speed
of propagation of light in the medium considered, and )\, is the wave-
length in the medium..

Since the speed ¢ depends on the medium under consideration, it is
better to define €, and C: in terms of ¢,, the speed of light in vacuum, so
that C, and C; are then truly constants. For a dielectric, the speed in the
medium is given by c= c,/n where n is the index of refraction. Planck’s
distribution for the energy in a wavelength interval d\, becomes (note
that A, is the wavelength in the medium)

2 2
exgpn) = ol g = Emh

5, (echlkAyT — ) T n2\3, (eCoh/mkhpT — 1)

= 27C, D (2-30)

= n2\3, (eC/m T —1)

. A
If n can be considered independent of wavelength, then d)\m=d<;l)
=1 d\ and
n

27Cn2

eAmb()\)dAmz)‘?(e(‘TM‘_T)

d\ (2-31)

In equations (2-30) and (2-31), Ci=hc? and C,=hco/k which are the
values of C, and C; presented in table IV of the appendix. The \ is the
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wavelength in a vacuum, while A is the wavelength in the medium. Note
that the refractive index cancels out of the exponential term when A is
used. Equation (2-31) gives the emissive power for a wavelength interval
in the medium in terms of the corresponding wavelength interval in
vacuum where A = nAn.

The integration of equation (2-31) over all wavelengths follows directly
from equation (2-19) when n is constant. This yields the Stefan-Boltz-
mann law for hemispherical total emissive power in a medium of refrac-
tive index n

ey, m=n*aT? (2-32)

The emission within glass (n ~ 1.5) can thus be 2.25 times that from a
surface into air.
Finally, Wien’s displacement law by similar arguments becomes

Amax] = nAmax, mI=Cs (2-33)

where Ap. is the wavelength at peak emission into a vacuum and
Amax, m is the wavelength at peak emission into a medium.

For metals, it is shown in chapter 4 that the simple index of refraction
must be replaced by the complex index of refraction n—ik. In deter-
mining the speed of propagation c in terms of ¢, in metals, the simple
refractive index n in equations (2-30) to (2-33) must be replaced by the
modulus of the complex refractive index, |n—ixk|=(n?+ k2)Y2 remem-
bering that the restriction of wavelength independence has been imposed.

These refinements will not be carried in succeeding sections because
their applicability to engineering radiation problems is small. A notable
exception is the work of Gardon and others (refs. 8 to 10) dealing with
radiation effects in molten glass.

2.5 EXPERIMENTAL PRODUCTION OF A BLACKBODY

When making experimental measurements of the radiative properties
of real materials, it is desirable to have a black surface for reference so
that a direct comparison can be made between the real surface and the
ideal (black) surface. Since perfectly black surfaces do not exist in
nature, a special technique is utilized to provide a very close approxima-
tion to a black area. Figure 2-11 shows a metal cylinder that has been
hollowed out to form a cavity with a small opening. If an incident beam
passes into the cavity as shown, it strikes the cavity wall and part is
absorbed with the remainder being reflected. The reflected portion
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strikes other parts of the wall and is again partially absorbed. It is
evident that, if the opening to the cavity is very small, very little of the
original incident beam will manage to escape back out through the
opening. Thus by making the opening sufficiently small, the opening
area approaches the behavior of a black surface because essentially
all the radiation passing in through it is absorbed. To help keep the
cavity at a uniform temperature so that the internal radiation will all
be in thermal equilibrium, the cavity shown in figure 2-11 is machined
from a copper cylinder and surrounded by insulation. By heating the
cavity, a source of black radiation is obtained at the opening since, as
previously discussed in section 2.3.1, a perfectly absorbing surface is
also perfectly emitting. The polished surface at the front of the cavity
aids in shielding the opening from stray radiation from the surroundings.

The attainment of isothermal conditions in such a cavity (often
referred to as a “hohlraum”™) is a difficult but necessary condition in
the accurate experimental determination of radiative properties.

2.6 SUMMARY OF BLACKBODY PROPERTIES

It has been shown in this chapter that the ideal blackbody possesses
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TABLE 2-1I. — BLACKBODY

Symbol Name Definition
AT Spectral intensity Emission in any direction per unit of pro-
jected area normal to that direction, and per
unit time, wavelength interval about A, and
solid angle
iiJ(T) Total intensity Emission, including all wavelengths, in any
direction per unit of projected area normal
to that direction, and per unit time and
solid angle
e\ BT Directional spectral Emission per unit solid angle in direction B
emissive power per unit surface area, wavelength interval,
and time
eh8, T Directional total Emission, including all wavelengths, in di-
emissive power rection B per unit surface area, solid angle,
and time
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RADIATION QUANTITIES

Geometry Formula

it ¢
A i\pcos B
90°
B All A ﬂd cos B
n
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TasLE 2-1I. — BLACKBODY

Symbol

Name

Definition

enp'h By - B8y - 62,

Finite solid angle spec-
tral emissive power

Emission in solid angle By <B< B,
6, < 8< 6y per unit surface area, wave-
length interval, and time

eyBy - P2.8) - 6.

Finite solid angle total

Emission, including all wavelengths, in

emissive power solid angle By <P< By, 8; <BC 6, per unit
surface area and time
expiMy ~A2,By ~Bp.8) -8,,T)| Finite solid angle band | Emission in solid angle £y < B < By,
emissive power 0; <8< 6y and wavele band Ay - My

per unit surface area and time

e D

Hemispherical spectral
emissive power

Emission into hemispherical solid angle
per unit surface area, wavelength inter-
val, and time
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RADIATION QUANTITIES — Continued

Geometry

Formula

@

2 2
N sin® B, - sin® B
I)‘b(ﬂz - el) 2

By - By Al
_ (

o_;ﬂ 60y 1sin2 By z sin2 Bl!

.6-2 - ZE>
%-4(92_91) in®B, - sin

2

(‘o-xz - Fo-Al)

295-763 OL-68—4

41



42 THERMAL RADIATION HEAT TRANSFER

TaBLE 2-II. —BLACKBODY

Symbol Name Definition
epidy - A Hemispherical band Emission in wavelength band A -2, into
emissive power hemispherical solid angle per unit surface

area and time

ey Hemispherical total Emission, including all wavelengths, into
emissive power hemispherical solid angle per unit surface
area and time

certain fundamental properties that make it a standard with which real
radiating bodies can be compared. These properties, listed here for
convenience, are the following:

(1) The blackbody is the best possible absorber and emitter of radiant
energy at any wavelength and in any direction.

(2) The total radiant intensity and hemispherical total emissive power
of a blackbody are given by the Stefan-Boltzmann law:

./

wiy,=ep=0T*

(3) The blackbody directional spectral and total emissive power
follow Lambert’s cosine law:

exo(X, B) =ex, n(N) cos B
e)(B)=eb ncos B

(4) The spectral distribution of intensity of a blackbody is given by
Planck’s distribution:
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RADIATION QUANTITIES — Continued

Geometry Formula

°74(Fo-x2 ; Fo-xl)

ot

. _ 2¢C,
Lo(N) = NS (eChT_])

(5) The wavelength at which the maximum spectral intensity of
radiation for a blackbody occurs is given by Wien’s displacement law:

Amaxz %

Because of the many definitions introduced in this chapter, it is
convenient to summarize the quantities in tabular form. This has been
done in table 2-II. The formulas for the quantities are given in terms
of either the spectral intensity i;,(\), which is computed from Planck’s
law, or the surface temperature T.

2.7 HISTORICAL DEVELOPMENT

The derivation of the approximate spectral distributions of Wien and of
Rayleigh and Jeans, the Stefan-Boltzmann law, and Wien’s displacement
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law are all seen to be logical consequences of the spectral distribution of
intensity as derived by Max Planck. However, it is interesting to note
that all of these relations were formulated prior to publication of Planck’s
work in 1901 and were originally derived through fairly complex thermo-
dynamic arguments. ‘

Joseph Stefan (ref. 11) proposed in 1879, after study of some experi-
mental results, that emissive power was related to the fourth power of
the absolute temperature of a radiating body. Ludwig Edward Boltzmann
(ref. 12) was able to derive the same relation in 1884 by analyzing a
Carnot cycle in which radiation pressure was assumed to act as the pres-
sure of the working fluid.

Wilhelm Carl Werner Otto Fritz Franz (Willy) Wien (ref. 13) derived
the displacement law in 1891 by consideration of a piston moving within
a mirrored cylinder. He found that the spectral energy density in an
isothermal enclosure and the spectral emissive power of a blackbody
are both directly proportional to the fifth power of the absolute tempera-
ture when “corresponding wavelengths” are chosen. The relation pre-
sented in section 2.4.8 (eq. (2-17)) is more often cited as Wien’s dis-
placement law, but is actually a consequence of the previous sentence.

Wien (ref. 14) also derived his spectral distribution of intensity through
thermodynamic argument plus assumptions concerning the absorption
and emission processes.

Lord Rayleigh (1900) and Sir James Jeans (1905) based their spectral
distribution on the assumption that the classical idea of equipartition
of energy was valid (refs. 15 and 16).

The fact that measurements and some theoretical considerations ®
indicated Wien’s expression for the spectral distribution to be invalid
at high temperatures and/or large wavelengths led Planck to an investiga-
tion of harmonic oscillators which were assumed to be the emitters and
absorbers of radiant energy. Various further assumptions as to the
average energy of the oscillators led Planck to derive both the Wien and
the Rayleigh-Jeans distributions. Planck finally found an empirical
equation which fit the measured energy distributions over the entire
spectrum. In determining what modifications to the theory would allow
derivation of this empirical equation, he was led to the assumptions
which form the basis of the quantum theory. As we have seen, his equa-
tion leads directly to all the results derived previously by Wien, Stefan,
Boltzmann, Rayleigh, and Jeans.

For an interesting and informative comprehensive review of the
history of the field of thermal radiation, the article by Barr (ref. 17) is
recommended.

3t was felt that as temperature approaches large values, the intensity of a blackbody should not approach a finite
limit. Examination of Wien’s formula {eq. (2-13)) shows that this condition is not met. Planck’s distribution law (eq. (2-11)),
however, does satisfy the condition.
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Chapter 3. Definitions of Properties for Nonblack Surfaces

3.1 INTRODUCTION

In chapter 2 the radiative behavior of a blackbody was presented in
detail. The ideal behavior of the blackbody serves as a standard with
which the performance of real radiating bodies can be compared. The
radiative behavior of a real body depends on many factors such as com-
position, surface finish, temperature, wavelength of the radiation, angle
at which radiation is either being emitted or intercepted by the surface,
and the spectral distribution of the radiation incident on the surface.
Various emissive, absorptive, and reflective properties, both unaveraged
and averaged, are used to describe the radiative behavior of real materi-
als relative to blackbody behavior.

The definitions of radiative properties of opaque materials are given
in this chapter. To make them of greatest value, the definitions are
presented rigorously and in detail. Since the definitions are numerous,
the reader should not expect to read the present chapter in as complete
detail as the discussion on the blackbody in chapter 2. Rather, some of
the alternate forms of defining the same quantity can be briefly scanned
to obtain an overall view of what information is available, and the chap-
ter then used as a reference source. The sections have been subdivided
and made fairly independent to facilitate use for reference purposes.

The rigorous examination of radiative property definitions arises
from the need to properly interpret available property data for use in
heat-transfer computations. A limited amount of data in the literature
provides detailed directional and spectral measurements. Because of the
difficulties in making these detailed measurements, most of the tabulated
property values are averaged quantities. An averaged radiative perform-
ance has been measured for all directions, all wavelengths, or both. A
clear understanding of the averages involved can be obtained from the
definitions of this chapter. The definitions also reveal relations between
various averaged properties in the form of equalities or reciprocity rela-
tions. This enables the researcher or engineer to make maximum use of
the available property information. Thus, for example, absorptivity data
can be obtained from measured emissivity data if certain restrictions are
observed. These restrictions have often been misunderstood, resulting in
confusion or inaccuracy in applying measured properties.

By detailed examination of the derivation of property definitions, the
restrictions on the property relations are demonstrated. As an aid to

47
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understanding these definitions, figure 3—1 provides a schematic repre-
sentation of the types of directional properties. The various parts of this
figure will be referred to as each definition is introduced to help provide
a physical interpretation of the quantities being discussed. Further,

(a)

(a) Directional emissivity €' (8, 6, T4).
(b) Hemispherical emissivity €(T4).

FiGURE 3-1.— Pictorial description of directional and hemispherical radiation properties.
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table 3-1 lists each of the properties, its symbolic notation, and the

equation number of its definition. The notation is described in section
3.1.2.

(c) Directional absorptivity o' (8, 0, T,).
(d) Hemispherical absorptivity a (7).

FIGURE 3-1. - Continued.
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Measured properties of real materials are given in chapter 5 to demon-
strate the practical use of the relations derived here.

i"By, 8, B,6,Tp) i1, )

(e) Bidirectional reflectivity p"(Br, 6r, B8, 6, T4).
(f) Directional-hemispherical reflectivity p'(B, 6, Ta).

FiGURE 3-1.— Continued.
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it(By. 8, Ta)

(8) Hemispherical-directional reflectivity p’ (8;, 8;, T\).
(h) Hemispherical reflectivity p(T4).

F1GURE 3-1.—Concluded.

51
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TARLE 3-1. — SUMMARY OF SURFACE PROPERTY DEFINITIONS

Quantity Symbol Defining | Descriptive
equation figure
Emissivity
Directional spectral.............ccoooiiiiiininennns €rereenininaenn 3-2 3-1(a)
Directional total.......oooiiiiiiiiiiiiiiiiiees € i 3-3 3-1(a)
Hemispherical spectral 3-5 3-1(b)
Hemispherical total..............coooeiiinn 3-6 3-1(b)
Absorptivity
Directional spectral............cocoeiiiiiin Orenaenninnn 3-10a 3-1(c)
Directional total.........cccoeveeiiiiiiiiiinineiens P A, 3-14 3-1(c)
Hemispherical spectral...............c..oooeiiinn, Oheevenenannns 3-16 3-1{d)
Hemispherical total...............c..coon Quieriannnnn 3-18 3-1(d)
Reflectivity
Bidirectional spectral.......................... . 3-20 3-1(e)
Directional-hemispherical spectral 3-24 3-1(f)
Hemispherical-directional spectral............. ceeed PABr, 6).... 3-26 3-1(g)
Hemispherical spectral.................... . 3-29 3-1(h)
Bidirectional total..............ccooiiiinns . 3-39 3-1(e)
Directional-hemispherical total 341la 3-1(f)
Hemispherical-directional total . 3—-41b 3-1(g)
Hemispherical total..................ooi 3-43 3-1(h)

3.1.1 Nomenclature

A number of suggestions have been made in an effort to standardize
the nomenclature of radiation. One controversy centers around the end-
ing ““ivity” for the various radiative properties of materiais. The National
Bureau of Standards is attempting to standardize nomenclature, and in
their publications reserve this ending for the properties of an optically
smooth substance with an uncontaminated surface (emissivity, reflec-
tivity, etc.), while assigning the “ance” ending (i.e., emittance, reflect-
ance, etc.), to measured properties where there is a need to specify
surface conditions.
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It is the practice in most fields of science to assign the “ivity” ending
to intensive properties of materials, such as in the cases of electrical
resistivity, thermal conductivity, or diffusivity. The ‘“ance” ending is
reserved, however, for extensive properties of materials as in electrical
resistance or conductance. Use of the term “emittance” as defined in the
previous paragraph does not follow this convention, since “emittance”
would still be an intensive property as long as opaque materials are
considered. Further, it seems cumbersome to define two terms for the
same concept, using one term to differentiate the one very special case
of the perfectly prepared pure substance.

For these reasons, the “ivity” ending will be used throughout this
book for the radiative properties of opaque materials whether for ideal
uncontaminated surfaces or for properties with some given surface
condition. The “‘ance” ending can then be reserved for an extensive
property such as the emittance of a layer of water where the emittance
would vary with thickness. The derived relations of course apply regard-
less of the nomenclature adopted.

It must be noted that the “ance” ending is often found in the literature
dealing with the experimental determination of surface properties. The
term “‘emittance” is also used in some references to describe what we
have called emissive power.

3.1.2 Notation

Because of the many independent variables that must be specified
for radiative properties, a concise but accurate notation is necessary.
The notation to be used here is an extension of that introduced in the
preceding chapter. A functional notation is used to explicitly give the
variables upon which a quantity depends. For example €,(\, 8, 6, T4)
shows that €, depends on the four variables noted. The prime denotes a
directional quantity, and the A subscript specifies that the quantity
is spectral. Certain quantities depend upon two directions (four angles);
these will be given a double prime. A hemispherical quantity will not
have a prime, and a total quantity will not have a A subscript. A quantity
that is directional in nature, that is, it is evaluated on a “per unit solid
angle” basis, will always have a prime even if in a specific case its
numerical value is independent of direction; the independence of direc-
tion is denoted by the absence of (8, 6) in the functional notation. Simi-
larly a spectral quantity will always have a A subscript even when in
specific cases the numerical value does not vary with wavelength; such
a specific case would not have a X in the functional notation.

Additional notation is needed for the energy rate Q for a finite area
in order to keep consistent mathematical forms for energy balances.
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Thus, d2Q), denotes as before a directional-spectral quantity, but the
second differential is needed to denote that the energy is of differential
order in both wavelength and solid angle. Thus, dQ’ and dQ), are dif-
ferential quantities with respect to solid angle and wavelength, respec-
tively. If a differential area is involved, the order of the derivative is
correspondingly increased.

This notation may appear somewhat redundant, but the usefulness will
become clear in dealing with certain special cases, such as gray and
diffuse bodies. In addition, the shorthand value of referring to €) in the
text rather than writing out the term “directional spectral emissivity”
should be apparent. A study of table 3-1 will help clarify the notation
system being used.

The three main sections of the chapter each deal with a different
property, that is, emissivity, absorptivity, and reflectivity. In each of
these sections the most basic unaveraged property is presented first;
for example, in the first section, the directional spectral emissivity is
presented. Then the averaged quantities are obtained by integration.
The section on absorptivity also contains forms of Kirchhoff’s law relat-
ing absorptivity to emissivity. The section on reflectivity includes the
reciprocity relations.

3.2 SYMBOLS

surface area

a coeflicient

radiative emissive power

fraction of blackbody total emissive power
radiation intensity

energy rate; energy per unit time

energy flux; energy per unit area per unit time
distance between emitting and absorbing elements
absolute temperature

absorptivity

cone angle measured from normal of surface
circumferential angle

emissivity

wavelength

reflectivity

Stefan-Boltzmann constant, table IV of the appendix
solid angle

e E QXM TITHRNTTRRQ TS O

D

integration over solid angle of entire enclosing hemisphere
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Subscripts:

of surface A4
absorbed

blackbody

diffuse

emitted or emitting
incident

projected

reflected

specular

spectrally dependent

> e vy e Qo

Superscripts:

!

directional
bidirectional

"

3.3 EMISSIVITY

The emissivity is a measure of how well a body can radiate energy
as compared with a blackbody. The emitting ability can depend on
factors such as body temperature, the particular wavelength being
considered for the emitted energy, and angle at which the energy is
being emitted. The emissivity is usually measured experimentally at a
direction normal to the surface and as a function of wavelength. In
calculating energy loss by a body, the emission into all directions is
required, and for such a calculation an emissivity is needed that is
averaged over all directions and wavelengths. For radiant interchange
between surfaces, emissivities averaged over wavelength but not
direction might be needed; in other cases, when spectral effects become
large, spectral values averaged only over direction are used. Thus,
various averaged emissivities may be required by the analyst, and they
must often be obtained from available measured values.

In this section, the basic derivation of the directional spectral emis-
sivity is given. This emissivity is then averaged in turn with respect to
wavelength, direction, and then wavelength and direction simultaneously.

Values averaged with respect to wavelength are termed “total”
quantities; averages with respect to direction are termed ‘““hemispheri-
cal” quantities. This convention will be adhered to throughout this
publication.

3.3.1 Directional Spectral Emissivity € (X, B8, 0, T)

Consider the geometry for emitted radiation shown in figure 3—1(a).
As discussed in chapter 2 the radiation intensity is the energy per unit
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time emitted in direction (8, 6) per unit of the projected area dA, normal
to this direction, per unit solid angle and per unit wavelength band. In
some texts the intensity has been defined relative to the actual surface
area rather than the projected value. By basing the intensity on the pro-
jected area as is done here, there is the advantage that for a black surface
the intensity has the same value for all directions. Unlike the intensity
from a blackbody, the emission from a real body does depend on direction
and hence the (8, 6) designation is included in the notation for intensity.
The energy leaving a real surface d4 of temperature T, per unit time
in the wavelength interval d\ and within the solid angle dw, is then
given by

d3Q\(\, B, 0, Ta)=i\(\, B, 0, T4)dA cos B dhdw=e)(\, B, 0, T4)dAd\dw
(3-1a)

For a blackbody the intensity is independent of direction and was
designated in chapter 2 by i;,(\). The T4 notation is introduced here to
clarify when properties are temperature dependent so that the blackbody
intensity is designated as i,(\, T4). The energy leaving a black area
element per unit time within d\ and dw is

d*Q (N, B, Ta) =irs (X, T4)dA cosB d\dw=¢€)\p(\, B, Ta)dAd\dw
(3-1b)

The emissivity is then defined as the ratio of the emissive ability of the
real surface to that of a blackbody; this provides the definition

_ d%Q4(\. B. 6, Ta)
Ql(N, B Tr)

Directional spectral emissivity = €X(X, B, 0, Tx)

ZL;\(Aa B’ 09 TA) __e;‘(Aa Bs 97 TA)

T e BT O

This is the most fundamental emissivity, because it includes the de-
pendence on wavelength, direction, and surface temperature.

EXAMPLE 3-1: At 60° from the normal, a surface heated to 1500° R
has a directional spectral emissivity of 0.70 at a wavelength of 5 um.
The emissivity is isotropic with respect to the angle 6. What is the

spectral intensity in this direction?
From table V of the appendix, for a blackbody at AT of 7500 (um)(°R),
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exo(N, T4)/T5=163.5 X 10~ Btu/(hr)(sq ft)(um)(°R). Then

ix(5 um, 60°, 1500° R)=¢} (5 um, 60°, 1500° R)i, (5 wm, 1500° R)
=€} (5 um, 60°, 1500° R) %‘" (5 wm, 1500° R)

X 10-15
=0.70% M’Tm (1500)5 =276 Btu/(hr)(sq f)(um)(sn)

3.3.2 Averaged Emissivities

From the directional spectral emissivity as given in equation (3-2),
an averaged emissivity can now be derived by proceeding along one of
two approaches: averaging over all wavelengths or averaging over all
directions.

3.3.2.1 Directional total emissivity € (B, 8, T4).— Looking first at an
average over all wavelengths, the radiation emitted into direction (8, 6),
including the contributions from all wavelengths, is found by integrating
the directional spectral emissive power to give the directional total
emissive power (as in chapter 2 the term “total” denotes that radiation
from all wavelengths is included)

¢' (B, 0, T,,)=f° ei(\, B, 0, Ta)dr
0

Similarly from table 2-1II the directional total emissive power for a
blackbody is given by

(8, T = [~ ew(r, g, Tayan="T1c02 P

The directional total emissivity is the ratio of e'(B, 8, Ty) for the real
surface to e;(B, T4) emitted by a blackbody at the same temperature;
that is,

e’(Bv 09 TA)

Directional total emissivity = €' (B, 0, Ty) = e (B, Tx)
b\Ps LA

fx el(\, B, 0, T4)d\
[
= (3-3a)
4
0-—:4 cos 8

295-763 OL-68—5
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The ej(\, B, 6, Ta) in the numerator can be replaced in terms of
ex(\, B, 8, T4) by using equation (3-2) to give

Directional total emissivity (in terms of directional spectral emissiv-

ityy=¢€'(B, 6, Ta)

fo el(A, B, 6, T)elw (N, B, Ta)dA

oT}

cos 8

- f * LA, B, 0, Ta)itw(N, Ta)dA

0

= oT1 (3-3b)

Thus if the wavelength dependence of ex(X, B, 6, T4) is known, the
€' (B, 0, T4) is obtained as an integrated average weighted by the black-
body emissive power. The ex(A, B, 6, T4) must be known with good
accuracy in the region where eu(X, B, T4) is large, so that the inte-
grand of equation (3-3b) will be accurate where it has large values.

EXAMPLE 3-2: At 1000° R the €,(A, B, 8, T4) can be approximated
by 0.8 in the range A=0 to 5 um and 0.4 for A > 5 pm. What is the value
of € (8,0, Ta)?

From equation (3-3b),

L" el(h, B. 8, Ta)el (X, B, Ta)d\

oT}

€(B,0,Ts)=

cos B

Apply the following relation obtained from table 2-1I:

ew(N, T4) cos B

elo(A, B, Ta) = .
This yields
, (T4 0.8 [en(, T)
€ (8, 0, Ta) = f - [——T3 ]d(m)
= [0.4 exp(N, TA)]
+ 2 2L L d(AT,
fs 3 [0 = (AT)
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From equation (2-27),
G’(B, 0, TA) =(.8 F0—5000+ 0.4 Fsooo_w = 08(0223) + 04(0777) =0.490

Since 77.7 percent of the emitted blackbody energy at 1000° R is in the
region for A > 5 um, the result is weighted heavily toward the 0.4 emis-
sivity value.

3.3.2.2 Hemispherical spectral emissivity ex(\, Ty).—Now return to
equation (3-2) and consider the average obtained by integrating the
directional spectral quantities over all directions of a hemispherical
envelope covering the surface (fig. 3-1(b)). The spectral radiation
emitted by a unit surface area into all directions of the hemisphere is
termed the hemispherical spectral emissive power and is found by in-
tegrating the spectral energy per unit solid angle over all solid angles.
This is analegous to equation (2-8a) for a blackbody and is given by

ex(A, TA)=fa i}'\(/\, B, 6,T4) cos Bdw

The notation f dw signifies integration over the hemispherical solid
o

angle. Here, iy (A, B8, 6, T4) cannot in general be removed from under
the integral sign as was done for a blackbody. By using equation (3-2)
this can be written as

ex(A, Ta) =il (N, Ty) fa ex(N, B, 0, T4) cos Bdw (3—4a)
For a blackbody the hemispherical spectral emissive power is from
equation (2—8b)

ekb(ha TA) =7Tl;\b()\’ TA) (3_4'b)

The ratio of actual to blackbody emission from the surface (eq. (3—4a)
divided by eq. (3-4b)) provides the following definition:

Hemispherical spectral emissivity (in terms of directional spectral
emissivity = e (A, T,)

— e)\(A’ TA) 1

ew(h. Ta) =;fo ex(A, B, 0, T4) cos B dw (3-5)

3.3.2.3 Hemispherical total emissivity €(T4).—To derive the hemi-
spherical total emissivity, consider that from a unit area the spectral
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emissive power in any direction is derived from equation (3-2) as
ex(\, B, 0, Ta)i(N, Ta) cos B. This is integrated over all A and w to
give the hemispherical total emissive power. Dividing by oT3, which is
the hemispherical total emissive power for a blackbody, results in the
following emissivity:

Hemispherical total emissivity (in terms of directional spectral emis-
sivity = €(T4)

_e(Tw) [ sose T)dA] do
“a(Ts) aT}

fo [f" ex(X, B, 0, Ta)inm(A, TA)d)\] cos B dw
- ° oT}

(3—6a)
By using equation (3-3b) this can be placed in a second form

Hemispherical total emissivity (in terms of directional total emissiv-
ity) = e(T4)

1
= fc €'(B,0,Ty) cos Bdw (3-6b)

If the order of the integrations is interchanged in equation (3—6a), there
results

G(TA)zfx (X, T4) U; ex(N\, B, 0, T4) cos Bdw] d\

0
oT}

Equation (3-5) is then utilized to obtain a third form

Hemispherical total emissivity (in terms of hemispherical spectral
emissivity) = €(T4)

ﬂfxex()\, Ta)ily (N, Ta)dA

[
= 3-6

Substituting equation (3—4b) gives
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L " ex(h, Ta)ero(A, T)dh

e(Ty) =
(Ta) =

(3—-6d)

To interpret equation (3—6d) physically, look at figure 3-2. In figure
3-2(a) is shown the emissivity €, for a surface temperature T4. The solid
curve in figure 3—2(b) is the hemispherical spectral emissive power for a
blackbody at T4. The area under the solid curve is oT4 which is the
denominator of equation (3—6d) and is equal to the radlatlon emitted per
unit area by a black surface including all wavelengths and directions.

7

- €)(h, Tp) = bla

Hemispherical spectral emissivity,
€3, Ty

(a)

P em(h TA)

Piad EA(A, TA)eM,()\, TA)

Hemispherical spectral emissive power, ey, Ty

M
Wavelength, A
(a) Measured emissivity values.

(b) Interpretation of emissivity as ratio of actual emissive power to blackbody emissive
power.

FIGURE 3-2.—Physical interpretation of hemispherical spectral and total emissivities.
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The dashed curve in figure 3-2(b) is the product ex(X, Ta)exs(\, T4) and
the area under this curve is the integral in the numerator of equation
(3-6d) which is the emission from the real surface. Hence €T) is the
ratio of the area under the dashed curve to that under the solid curve.
From a slightly different viewpoint, at each X the quantity €, is the or-
dinate of the dashed curve divided by the ordinate of the solid curve.

As shown in figure 3-2, for A, the hemispherical spectral emissivity is
GA(M, TA) = b/a.

ExXAMPLE 3-3: A surface at 1800° R is isotropic in the sense that €’
is independent of 8, but depends on 8 as shown in figure 3-3. What is

the hemispherical total emissivity and the hemispherical total emissive
power?

LO0—

- €'(B,1800° R)
/

Directional total emissivity, €'(B, 1800° R)

| | | | | | | |
0 10 20 30 L] 50 60 70 80 9%
Angle from normal, B, deg

FIGURE 3-3.— Directional total emissivity at 1800° R for example 3—3.

The €'(8, 1800° R) can be approximated in this case quite well by
the function 0.85 cos B8 (dashed line). Then from equation (3—6b) the
hemispherical total emissivity is

/2

=0.57

0

2n 3
e(Ty) =7—”_0L_: 0.85 sin B cos? BdBd6=—1.70 (—“’%’—3)

The hemispherical total emissive power is then
e(T4) =€(T4)oT4=0.57 X 0.173 X 10-* X 1800 = 10 300 Btu/(hr)(sq ft)

Generally the €’(8, T4) will not be well approximated by a convenient
analytical function, and the integration must be carried out numerically.
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3 . 4—

& x

s 85

— r—re

E”Sv ] i | |\

* 0 2 4 6 g V— o

Wavelength, A, um

FIGURE 3-4. —Hemispherical spectral emissivity for example 3-4. Surface temperature T,,
2000° R.

EXAMPLE 3—4: The ex(\, T,) for a surface at T, =2000° R can be
approximated as shown in figure 3-4. What is the hemispherical total
emissivity and the hemispherical total emissive power of the surface?

From equation (3—6d)

e (N, Ty

EY 1 2
G(TA) 20—;2‘[0 G}‘(K, TA)CM()\, TA)dA:;,fo 0.1 Ts ) T,q d\
A A

f 04"”’(" e Ta),p dx+1f°° 0.2 Ta) 7oy
adJs TA

This yields

em)=9—l . e”’d(m)+°4f "”’d(m)

4,02 0.2

O 12 000 Ts

d(ATA)

where the quantity e\/T3 is a function of AT4. From equation (2-27)
this can be written as

E(TA) = 0.1F0_4ooo+0.4~(F0_12 000—F0-4000) +0-2(1 —F0—12 000)
=— 0.3F0_4ooo+ 0.2F0_12 000 + 02
=-—10.3(0.1051) +0.2(0.7877) + 0.2=0.3260

The hemispherical total emissive power is

e(T4) = €(T4)oT4=0.326 X 0.173 X 10-8(2000) *= 9020 Btu/(hr)(sq ft).
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3.4 ABSORPTIVITY

The absorptivity is defined as the fraction of the energy incident on
a body that is absorbed by the body. The incident radiation is the result
of the radiative conditions at the source of the incident energy. The
spectral distribution of the incident radiation is independent of the
temperature or physical nature of the absorbing element (unless the
radiation emitted from the surface is partially reflected back to the
surface). Compared with emissivity, additional complexities are intro-
duced into the absorptivity because the directional and spectral charac-
teristics of the incident radiation must now be accounted for.

Experimentally it is often easier to measure the emissivity than the
absorptivity; hence, it is desirable to have relations between these two
quantities so that measured values of one will allow the other to be cal-
culated. Such relations are developed in this section along with the
definitions of the absorptivity quantities.

3.4.1 Directional Spectral Absorptivity (A, B, 0, T4)

Figure 3-1(c) illustrates the energy incident on a surface element
dA from the (8, ) direction. The line from dA4 in direction (3, 6) passes
normally through an area element dA4. on the surface of a hemisphere
of radius r placed over d4. The incident spectral intensity passing
through dA. is i) i(A, B, 6). This is the energy per unit area of the
hemisphere, per unit incident solid angle (the shaded solid angle in
fig. 3-1(c)), per unit time, and per unit wavelength interval. The energy
within the incident solid angle strikes the area d4 of the absorbing
surface. The fraction of this incident energy that is absorbed is defined
as the directional spectral absorptivity aj(\, B, 6, T4). In addition to
depending on the wavelength and direction of the incident radiation, the
spectral absorptivity is a function of the absorbing surface temperature.
The energy per unit time incident from direction (8, 6) in the wavelength
interval d\ is

;. (. B, 0) =i, (A, B, 0) dde LB g (3-7)
r

where dA cos B/r? is the solid angle subtended by d4 when viewed
from dA.. Note that

dA.
E@f;—s‘éd/‘ie= -r—2—cosB dA=dw cos B dA (3-8)

r
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where dw is the solid angle subtended by d4. when viewed from d4
located at the center of the base of the hemisphere (fig. 3-1(c)). Equation
(3-8) will be used in many of the derivations that follow. Equation (3-7)
can then be written as

d*Q,, i\, B, 0) =1i; (A, B, 6) dw cos B dAd\ 3-9)

The amount of the incident energy d®Q) ;that is absorbed is desig-
nated as d*Q, ,. Then the ratio is formed

3, ’
Directional spectral absorptivity = aj(\, B, 0, T4) = d°0). ‘,'()\’ B.9.Ta)
daO)\, i(A, Bs 0)

_ d*Qi.a(N, B, 6, Ta)
ix.{X,B,0) dA cos B dwd\

(3—10a)

If the incident energy is from black surroundings at uniform temperature
T}, then there is the special case

aQ, ,(\, 8,6, T
a;\(}‘s B, 0, TA) =- 0}\,11( B A)

ixp, (X, Ty) dA cos B dwd\ (3—10b)

3.4.2 Kirchhoff's Law

This law is concerned with the relation between the emitting and
absorbing abilities of a body. The law can have various conditions im-
posed on it depending on whether spectral, total, directional, or hemi-
spherical quantities are being considered. From equations (3-1) and
(3-2) the energy emitted per unit time by an element d4 in a wavelength
interval d\ and solid angle dw is

d*Qx..=ix(\, B, 0, T4) dA cos B dwdA

=€,(N\,B,0,T4)iy, (A, Ta) dA cos B dwd) (3-11)

If the element d4 at temperature T, is assumed to be placed in an
isothermal black enclosure also at temperature T, then the intensity
of the energy incident on dA4 from the direction (8, 6) (recalling the
isotropy of intensity in a black enclosure) will be i,(A, T4). To maintain
the isotropy of the radiation within the black enclosure, the absorbed and
emitted energies given by equations (3-10b) and (3—11) must be equal.
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Equating these gives

E;\(Av Bv 07 TA)=a,A(AsB» 0’ TA) (3_12)

This equality is a fixed relation between the properties of the material
and holds without restriction. This is the most general form of Kirchhoff’s
law.?

3.4.3 Directional Total Absorptivity a’ (83, 0, T4)

The directional total absorptivity is the ratio of the energy including
all wavelengths that is absorbed from a given direction to the energy
incident from that direction. The total energy incident from the given
direction is obtained by integrating the spectral incident energy (eq.
(3-9)) over all wavelengths to obtain

420! (8, 6) = cos BdAdwf: i (N, B, 8)dN (3-13a)

The radiation absorbed is determined by integrating equation (3—10a)
over all wavelengths, that is,

d20L(B. 8, T4) =cos B dAdw L " wl(h, By 8, Ta)is (N, B, 8)dA
(3-13b)

The following ratio is then formed:

2/,
Directional total absorptivity=a'(B, 6, T4) 2%

J'x al(n, B, 8, Ta)il (N, B, 6)d\

0

= f (3-14a)

T i N B, 0)dA

0

By use of Kirchhoff's law (eq. (3-12)) an alternate form of equation
(3-14a) is

? As will be di d in chapter 4 in jon with radiation properties of electrical conductors, radiation is polarized
in the sense of having two wave components vibrating at right angles to each other and to the propagation direction
For the special case of black radiation the two components of polarization are equal. To be strictly accurate, equation
(3-12) holds only for each component of polarization; and for equation (3~12) to be valid as written for all incident energy,
the incident radiation must be polarized into equal components.
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tx

J €i(M, B, 8. T)ili(A, B, 0)dr
o' (B, 0, Ty) == ~ (3-14b)
fo i (A By 8)d

3.4.4 Kirchhoff's Law for Directional Total Properties

The general form of Kirchhoff’s law (eq. 3-12) shows that €} and aj
are equal. It is now of interest to examine this equality for the directional
total quantities. This can be accomplished by comparing a special case
of equation (3-14b) with equation (3-3b). If in equation (3-14b) the
incident radiation has a spectral distribution proportional to that of a
blackbody at T4, then i} ;(A, B, 8) =C(B, )i)\y(\, T4) and equation
(3—14b) becomes

f ei(\, B, 8, Ta)ito (N, Ta)d\

|7t T (=9

o' (B, 0,Ta)= =€'(B, 0, T4)

Hence when €, and «) are dependent on wavelength, o' (B, 6, T4)
=€ (B, 6, T4) only when the incident radiation meets the restriction
iri(A, B, 0) =C(B, 0)ixp(N, T4) where C is independent of wavelength.
There is another important case when the relation o' (8, 6, T4)
=¢€'(B, 0, T4) is valid. If the directional emission from a surface has
the same wavelength dependence as a blackbody, i{(A, B, 6, T.)
=C(B, 0)irp(A, T4), then the €, is independent of A\. From equations
(3-3b) and (3-14b) if €X(B, 9, T4) and hence «;(8, 8, T4) do not depend
on A, then, for the direction (8, 0), €X, aj, €', and o’ are all equal. A sur-
face exhibiting such behavior is termed a directional gray surface.

3.4.5 Hemispherical Spectral Absorptivity ax(\, T4)

The hemispherical spectral absorptivity is the fraction of the spectral
energy that is absorbed from the spectral energy incident from all di-
rections over a surrounding hemisphere (fig. 3-1(d)). The spectral energy
from an element d4. on the hemisphere that is intercepted by a surface
element dA4 is given by equation (3-9). The incident energy on d4 from
all directions of the hemisphere is then given by the integral

EQui= Ak [ 5.\, B, O cos B (150
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The amount absorbed is found by integrating equation (3—10a) over the
hemisphere

1. a= dAdN [ at(\. B, 0. T)if. (A B. 0) cos f do

(3-15b)
The ratio of these quantities gives
Hemispherical spectral absorptivity = ax(X, Ta)
dzo)\ fo a)l\(}\v B’ Ga TA)I‘;\ i()\s B9 0) Ccos B dw
=70 A= (3-16a)
i fo ir.i(\, B, 6) cos Bdw
or by using Kirchhoff’s law
J; 6;‘()\, Bv 0, TA)i;“i(A, B, 0) CO0Ss Bdw
arx(\, Ty) = (3-16b)

J;J ir.i(A, B, 0) cos Bdw

The hemispherical spectral absorptivity and emissivity can now be
compared by looking at equations (3-16b) and (3-5). It is found that for
the general case, where a; and € are functions of A, 8, 60, and T4,
an(X, Ta) =ex(\, T4) only if iy i(\) is independent of B and 0, that is,
if the incident spectral intensity is uniform over all directions. If this is
so, the i} ; can be canceled in equation (3—-16b) and the denominator
becomes 7 which then compares with equation (3-5).

For the case aj(X\, T4) =ex(A, T4), that is, the directional spectral
properties are independent of angle, then the hemispherical spectral
properties are related by ax(A, T4) = (A, T4) for any angular variation
of incident intensity. Such a surface is termed a diffuse spectral surface.

3.4.6 Hemispherical Total Absorptivity a(T4)

The hemispherical total absorptivity represents the fraction of energy
absorbed that is incident from all directions of the enclosing hemi-
sphere and for all wavelengths as shown in figure 3-1(d). The total
incident energy that is intercepted by a surface element dA is deter-
mined by integrating equation (3-9) over all A and all (8, 8) of the hemi-
sphere which results in
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d0i=dA L U} i i, B, O)dx] cos B do (3-17a)

Similarly by integrating equation (3-10a), the total amount of energy
absorbed is equal to

dQu(Ts) = dA L [ f (N, B, 6, TA)il (M, B, o)dx] cos B dw
(3-17b)

The ratio of absorbed to incident energy provides the definition

Hemispherical total absorptivity (in terms of directional spectral ab-
sorptivity or emissivity) = a(T)

_dQu(Ty) _.[o [Lx ar(X, B, 0, Ta)ix (A, B, O)d;\] cos Bdw
E fo [f: i (N B, O)d)\] cos Bdw

(3-18a)

or from Kirchhoff’s law

T = fo [L" ex(M\, B, 0,Ty)is (N, B, lo)d)\] cos B dw
" _L [Lx (X, B, G)d)\] cos Bdw
(3-18b)

Equation (3-18b) can be compared with equation (3-6a) to determine
under what conditions the hemispherical total absorptivity and emis-
sivity are equal. It is recalled in equation (3—6a) that

(rTﬁ:fo [fi;,,(x, TA)dx] cos B dw

The comparison reveals that for the general case when €, and ay vary
with both wavelength and angle, then a(74) = €(Ty) only when the in-
cident intensity is independent of the incident angle and has the same
spectral form as that emitted by a blackbody with temperature equal to
the surface temperature Ty, that is, only when
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i:\, i(As Ba 0) :C”;\D(AQ TA)

where C is a constant. Some more restrictive cases are listed in table 3-II.

TaBLe 3-11. — SUMMARY OF KIRCHHOFF'S LAW RELATIONS BETWEEN ABSORPTIVITY AND

EMISSIVITY
Type of quantity Equality Restrictions
Directional spectral........| ay(A, 8, 8, T4) None

=6, B, 0, Ty)

Directional total............. a'(B, 8, Ty Incident radiation must have a spec-
=¢€'(B, 0, Ts) tral distribution proportional to that
of a blackbody at T4

ir, i\, B, 0)=C(B, 8)irs(X, Tu);

or (B, 8, T)=€xB, 0, T4) are inde-
pendent of wavelength (directional-
gray surface)

Hemispherical spectral....| ax(A, T4) Incident radiation must be independ-
=&, Ty) ent of angle

i, iM=C(\);

or a\(A, T) =€)\, Ta) do not depend
on angle (diffuse-spectral surface)

Hemispherical total........| a(Tx)=€(Ts) Incident radiation must be independ-
ent of angle and have a spectral distri-
bution proportional to that of a black-
body at Ta
i;\, {A)=Ci(A, T4):
or incident radiation independent of
angle and
a8, 8, To=eB, 6, Ty) are inde-
pendent of A (directional-gray sur-
face);
or incident radiation from each direc-
tion has spectral distribution propor-
tional to that of a blackbody at T, and
aj(A, T)=¢€\X, Ty) are independent
of angle (diffuse-spectral surface);

" or aj(T4)=¢}(T4) are independent of
wavelength and angle (diffuse-gray
surface)




DEFINITIONS FOR NONBLACK SURFACES 71

Substituting equation (3-14a) into equation (3—18a) gives the fol-
lowing alternate forms:

Hemispherical total absorptivity (in terms of directional total absorp-
tivity) = a(T,)

LIF aos 0)A| o (8. 0, T.) cos pdo
— (o]

" (3-18¢)
fo U; iri(A, B, O)d)\] cos Bdw
or
f a'(B, 0, Ta)ii (B, 9) cos B dw
a(T,) == (3-18d)

fo i{(B, 0) cos Bdw

where ii (8, 0) is the incident total intensity from direction @8, ).
Changing the order of integration in equation (3-18a) and then sub-
stituting equation (3-16a) give

Hemispherical total absorptivity (in terms of hemispherical spectral
absorptivity) = a(T,)

_f’ :a"(k’ T4) ‘fa ir.i(N, B, 0) cos Bda;| d\

0

. f [ fo is.i(\, B, 6) cos Bd,,,] N (3-18¢)

or

" an(N, Ta)d?0s.
] " 20,

(1}

a(Ta)=f°

(3-18f)

where d?Q,. ; is the spectral energy incident from all directions that is
intercepted by the surface element dA.

3.47 Summary of Kirchhoff's Law Relations

The restrictions on application of Kirchhoff’s law are summarized in
table 3-II.
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3.5 REFLECTIVITY

The reflective properties of a surface are more complicated to specify
than either the emissivity or absorptivity. This is because the reflected
energy depends not only on the angle at which the incident energy im-
pinges on the surface, but additionally on the direction being con-
sidered for the reflected energy. Some of the pertinent reflectivity quan-
tities will now be defined.

3.5.1 Spectral Reflectivities

3.5.1.1 Bidirectional spectral reflectivity p\(\, Br, 6r, B, #). — Consider
incident spectral radiation on a surface from direction (8, 6) as shown
in figure 3—1(e). Part of this energy is reflected into the (8,, 6-) direction
and provides a part of the reflected intensity in the (8-, 6r) direction.
The subscript r will always denote quantities evaluated after reflection.
The entire magnitude of the iy (X, Br, 6;) is the result of summing the
reflected intensities produced by the incident intensities ir.i(A, B, 0
from all incident directions (8, 6) of the hemisphere surrounding the sur-
face element. The contribution to i) ,(\, Br, 6) produced by the inci-
dent energy from only one (8, 6) will be designated as ix. r(N, Br, 0-,8,0)
and it depends on both the incidence and reflection angles.

The energy from direction (8, 6) intercepted by dA per unit area and
wavelength is from equation (3-9),

303 (N, B, 0)
—%TSJ= ir.i(\, B, 6) cos Bdw (3-19)
The bidirectional spectral reflectivity is a ratio expressing the contribu-
tion that ii. i (A, 8, 8) cos B dw makes to the reflected spectral intensity
in the (8, 6;,) direction.

Bidirectional spectral reflectivity = pX(X, B+, 0r, B, 6)

— ”’)’\‘ r(xﬁ Bra 07‘7 Bs 0)
iy i(\, B, 8) cos Bdw

(3-20)

Although the reflectivity is a function of surface temperature, the T4
notation modifying p will be omitted at present for simplicity. The ratio
in equation (3-20) is a reflected intensity divided by the intercepted
intensity arriving within solid angle dw. Having cos 8 dw in the denom-
inator means that when p\(A, 8-, 8:, B, 0)i} (A, B, 9) cos B dw is in-
tegrated over all incidence angles to provide the reflected intensity
i\ r(N, Br, 0,), this reflected intensity will be properly weighted by the



DEFINITIONS FOR NONBLACK SURFACES 73

amount of energy intercepted from each direction. Since i” is one
differential order smaller than i’, the dw in the denominator prevents
PX(A, Br, 6;, B, 0) from being a differential quantity. For a diffuse reflec-
tion the incident energy from (8, 6) contributes equally to the reflected
intensity for all (B, 6,). It will be shown that the form of equation
(3-20) leads to some convenient reciprocity relations.

3.5.1.2 Reciprocity for bidirectional spectral reflectivity.—1It is generally
true that p{(A, Br, 6, B, 0) is symmetric with regard to reflection and
incidence angles, that is, p} for energy incident at (8, 6) and reflected at
(Br, 0r) is equal to py for energy incident at (8,, ;) and reflected at (8, 6).

This is demonstrated by considering a nonblack element d4; located
within an isothermal black enclosure as shown in figure 3-5. For the
isothermal condition, the net energy exchange between black elements

FIGURE 3-5.—Enclosure used to prove reciprocity of bidirectional spectral reflectivity.

d4, and d4; must be zero. This energy exchange is by two possible
paths. The first is the direct exchange along the dashed line. This direct
exchange between black elements is uninfluenced by the presence of
dA: and hence is zero as it would be in a black isothermal enclosure
without d4,. If the net exchange along this path is zero and net exchange
including all paths between dA, and dA; is zero, then net exchange
along the remaining path having reflection from d4» must also be zero.

295-763 OL-68—6
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We can now write the following for the energy traveling along the
reflected path:

d*QN. i—2-3=d*Q3 3-21 (3—21a)

The energy reflected from d4, that reaches d4; is

1 dA
d*QX, 1—2-3= X, A\, Br, 0, B, 0) cos Br dAz—s-fgs—B‘s‘ d\

2
or, using equation (3—19),

dA, cos
dd, cos B

d40;:, l—2—3=p’A,(AS BT; 07‘9 B, 0) i;\_ l(A’ T) cos B ’2
1

s Br

X dA» M d (3-21b)

2

Similarly,
40}, a-2-1= YA, B 0. Bre 0k, a(A, T) cos B L1122 B2 coe g
1
x dd, H1 By (3910

Substituting equations (3-21b) and (3-21c) into equation (3—21a) gives
PK()\, BT’ 07" B’ e)ix, I(A’ T)=p,)((x’ B’ 03 B"’ 01‘)";\, 3(A’ T)

or, because iy (A, T)=ira(\, T)=im(A, T), we find the following
reciprocity relation for p):

PK()\a B?s 07‘9 B’ 0):px(As By 09 Bt‘v 01‘) (3_22)

3.5.1.3 Directional spectral reflectivities.—If i , is multiplied by
d\ cos BrdAdw, and integrated over the hemisphere for all 8, and 6;,
the energy per unit time is obtained that is reflected into the entire
hemisphere as the result of an incident intensity from one direction

d*Q;, (N, B, 0)=d\dA f ix. AN, Br, 6r, B, 0) cos Brdwr
a
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By use of equation (3—20) this is equal to

dst’. T(Av B’ 9)= i;\, i(Av Bv 9) cos Bdwddif P'):(A, Br, 01', B, 0) COs Br d(l)r
° (3-23)

The directional-hemispherical spectral reflectivity is then defined as
the energy reflected into all solid angles divided by the incident energy
from one direction (fig. 3-1(f)). This gives equation (3-23) divided by
the incident energy from equation (3-19)

Directional-hemispherical spectral reflectivity (in terms of bidirectional
spectral reflectivity) = p (A, 8, 6)

— daoi, T(X’ B’ 0) — "
_~——-——d30)’“ . B.0) —L Px(A, Br, 6-, B, 0) cos B, do, (3—-24)

Equation (3—24) defines how much of the radiant energy incident from
one direction will be reflected into all directions. Another directional
reflectivity is useful when one is concerned with the reflected intensity
into one direction resulting from incident radiation coming from all
directions. It is called the hemispherical-directional spectral reflectivity
(fig. 3-1(g)). The reflected intensity into the (8, 8,) direction is found
by integrating equation (3-20) over all incident directions

i5 By, 0,) = L DU\, Br. 61, B, 0)i, (. B, ) cosBdw (3-25)
The hemispherical-directional spectral reflectivity is then defined as the
reflected intensity in the (8, ;) direction divided by the integrated

average incident intensity

Hemispherical-directional spectral reflectivity (in terms of bidirectional
spectral reflectivity) = p (A, B-, 6,)

fo Pr(A, Br, 0-, B, 9) i)'\,i()\, B, 9) cos Bdw

1 (3-26)
L 808, 0) cos pda

35.14 Reciprocity for directional spectral reflectivity.— A reciprocity
relation can also be found for p} in the following manner. When the
incident intensity is uniform over all incident directions, equation (3-26)
reduces to
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Hemispherical-directional spectral reflectivity (for uniform incident
intensity) = p\(\, Br, 6r)

:J’Dp')’\(x’ B"’ 0"93» 6) COSBdﬁ) (3—27)

By comparing equations (3—24) and (3-27) and noting equation (3-22),
the reciprocal relation for p, results (restricted to uniform incident
intensity)

pr(A, B, 0)=p\(\, Br. 6r) (3-28)

where (8-, 6,) and (8, 6) are the same angles. This means that the
reflectivity of a material irradiated at a given angle of incidence (8, 6) as
measured by the energy collected over the entire hemisphere of reflec-
tion is equal to the reflectivity for uniform irradiation from the hemi-
sphere as measured by collecting the energy at a single angle of reflection
(Br, 6,) when (B;, ;) is the same angle as (8, 6). This relation is employed
in the design of “hemispherical reflectometers” for measuring radiative
properties (ref. 1).

3.5.1.5 Hemispherical spectral reflectivity pa(A\).—If the incident
spectral radiation arrives from all angles over the hemisphere (iig. 3-1(h)),
then all the radiation intercepted by the area element d4 of the surface
d?Q\, i is given by equation (3—15a) as

d?Qy, i(\) =dAdA J; ir.i(\, B, O)cos B dw

The amount of d2Q,,: that is reflected is, by integration of equation
(3-24),

01,0 = o\, B, &0}, 8, 0
=d\dA fo pAX, B, 0)i), i\, B, 8) cos Bdw
The fraction of d2Q\,i(A\) that is reflected provides the definition

Hemispherical spectral reflectivity (in terms of directional-hemispherical
spectral reflectivity) = pa(A)
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_ &0y N __d\dA
d?Q\,i(N)  d*Qx,:(N) Jo

Px(, B, 0)i3 (X, B, 6) cos Bdw (3-29)

3.5.1.6 Limiting cases for spectral surfaces.—Two important limiting
‘cases of spectrally reflecting surfaces will be discussed in this section.

35.16.1 Diffusely reflecting surfaces: For a diffuse surface the incident
energy from direction (8, 6) that is reflected produces a reflected in-
tensity that is uniform over all (8, 6,) directions, but the amount of
energy reflected may vary as a function of incident angle."® When viewing
a diffuse surface element irradiated by an incident beam, the element
will appear equally bright from all viewing directions. The bidirectional
spectral reflectivity is then independent of (8,, 6,), and equation (3-24)
simplifies to

pr.a(A, B, 0)=pi(A, B, 6) fo cos fBrdw,

Carrying out the integration gives for a diffuse surface

Px. dA, B, 0)=mpi(X, B, 6) (3-30)

so that for any incidence angle the directional-hemispherical spectral
reflectivity is equal to 7 times the bidirectional spectral reflectivity.
This is because p}, 4 accounts for the reflected energy into all (8,, 6,)
directions, while p} accounts for the reflected intensity into only one
direction. This is analogous to the relation between blackbody hemi-
spherical emissive power and intensity, ex(\) = 7i aw(A).

Equation (3-25) provides the intensity in the (8, 6,) direction when
the incident radiation is distributed over (B, 0) values. If the surface is
diffuse, and if the bidirectional reflectivity is independent of incidence
angle, and if the incident intensity is uniform for all incident angles,
equation (3-25) reduces to

i A(N)=pXN) i}, i()\)fo cos B dw=mp}(N)i}, {N) (3-31a)
By using equation (3-30), which applies for the diffuse surface,

ix, AN)=pA, ad(M) i3, i(N) (3-31b)

'°It is often tacitly assumed that diffuse reflectivities are independent of angle of incidence (B, 0), but this is not a
necessary condition for the diffuse definition.
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so that the reflected intensity in any direction for this case is simply the
hemispherical-directional reflectivity (which has been assumed independ-
ent of incidence angle) times the incident intensity. For the assumed
uniform irradiation, the spectral energy per unit time intercepted by
the surface element dA from all angular directions in the hemisphere is

d2Qy, i(\) =i’y (N) dAdX

so that

d*Qh,i(N)

ix.r(N) = pi, a\) 7 dAdN

(3-31c)

3.5.1.6.2'Specularly reflecting surfaces: Mirror-like, or specular, sur-
faces obey well-known laws of reflection. The perfect specular reflector
and the perfect diffuse surface provide two relatively simple special
cases that can be used for the calculation of heat exchange in enclosures.
For an incident beam from a single direction, a specular reflector, by
definition, obeys a definite relation between incident and reflected angles.
The reflected beam is at the same angle from the surface normal as the
incident beam and is in the same plane as that formed by the incident
beam and normal. Hence,

B-=B8, O&=60+m (3-32)
and at all other angles, the bidirectional spectral reflectivity of a specular

surface is zero. We can write

PK()M Bv 9, Br-» ar)specular’: P'}i()\» Ba 0, BT =:8’ 07': 6+ 77) = pl):, s()\» B» 0)
(3-33)
and the bidirectional spectral reflectivity of a specular surface is con-
sidered to be only a function of the incident direction.
For the intensity of radiation reflected from a specular surface into

the solid angle around (8-, 6,), equation (3-25) gives, for an arbitrary
directional distribution of incident intensity,

. (0 Br 0= [ PN B, 005 (M. B. ) cos B (3-34)

The integrand of equation (3—34a) has a nonzero value only in the small
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solid angle around the direction (8, 6) because of the properties of
Pxr. (A, B, 8). Equation (3—34a) can then be written as

is, r(A, Bry 0:) =p), (X, B, 0)i} i(A, B, 0) cos Bdw  (3-34b)

Let us now consider for a moment the general equation for bidirec-
tional spectral reflectivity (eq. (3-20)). When written for a specular
surface, it becomes

i,):, r(x’ B":B’ 0"= 0+1T) =p,h’, 3(A’ B9 o)i;‘, i()\s B, 0) CcOos B dw
(3-35)

This result is the intensity reflected into a solid angle around Br, 6,
from a single beam incident at (8=8,, §=6,— 7). The right side of
equation (3-35) is seen to be identical to the right side of equation (3—34b),
which gives the intensity reflected into the solid angle around Br, 6
from distributed incident radiation. The point of this line of reasoning
is to demonstrate the following rather obvious fact: In examining the
radiation reflected from a specular surface into a given direction, only
that radiation incident at the (8, 6) defined by equation (3—32) need be
considered as contributing to the reflected intensity regardless of the
directional distribution of incident energy.

From equations (3-26) and (3-34a), the hemispherical-directional
spectral reflectivity for uniform irradiation of a specular surface is
given by

[ P50 B.00i1 () cos o i}, (0.1, 6
P;,Q(A’BT’ 07‘) = =

- (3—36a)
1 . Iai
—f iy, i(A) cos B dw ’
wJo

Comparison with equation (3—34b) gives the relation between bidirec-
tional and hemispherical-directional spectral reflectivities for a specular
surface with uniform incident intensity as

P, s(X, Br, 6) =p} ,(, B, 6) cos Bdu (3—36b)

Use of the reciprocity relation (eq. 3-28) shows that the directional-
hemispherical reflectivity pr.s(X, B, 0) for a single incident beam is

p}:,s(ka ,39 0) zP;,,()\» st 01‘) =P;", 3(A, B, 0) COs ﬁr dwr (3_36(3)
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where the restrictions of equation (3-32) still apply and the incident
intensity is uniform.

The hemispherical spectral reflectivity of a uniformly irradiated
specular reflector is, from equation (3-29),

prs(N)= lf pr.s(X, B, 0) cos Bdw (3-37)
mJo

If p; , is independent of incident angle, evaluation of the integral in
equation (3—37) gives

prs (M) =py, (N) (3-38)

3.5.2 Total Reflectivities

The previous reflectivity definitions have dealt only with spectral
radiation; the definitions are now considered that include the contribu-
tions from all wavelengths.

35.2.1 Bidirectional total reflectivity p"(B-, 6, B, 6).—The bidirec-
tional total reflectivity gives the contribution made by the total energy
incident from direction (8, 6) to the reflected total intensity into the
direction (B, 6,). By analogy with equation (3-20),

Bidirectional total reflectivity = p"(B-, -, B, 0)

fx ”;\’ r(A9 BT’ 07, Ba o)dx

0

cos f3 dwf i}:. A B, 0)d\

x
[}

i (Br,6,8,6) a0,
" i5(B, 8) cos Bdw (3-39%)

As an alternate form, the reflected energy is given by integrating equa-
tion (3—20) over all wavelengths

i;'I(BT’ 07‘9 B$ 0) = cosBdwfxpf(A, BT, 01‘7 B9 e)iA’,l(A’ B’ o)d)\
0

so that equation (3—39a) can also be written as
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Bidirectional total reflectivity (in terms of bidirectional spectral reflec-
tiVity) = p"(Br, or, B’ 0)

f " pUN, Br, 0r, B, 0)ii(X, B, 0)dA
== i1(B, 0) (3-39b)

where i} (8, 0) =f°°i;,,.(x, B, 8)d\.
1]

3.5.2.2 Reciprocity.— Rewriting equation (3—-39b) for the case of
energy incident from direction (8;, 6,) and reflected into direction (8, )
gives

J’O p’A’(A9 Bv 03 Br, or)l),\, i(A, Br, 01‘)dA

pB, 6, Br, 6)= 7B 6 (3-39¢)
Comparison of equations (3-39b) and (3-39¢) shows that
P”(B9 9, B"" 07‘)=p”(Br, 0"9 B’ 0) (3_40)

if the spectral distribution of incident intensity is the same Jor all
directions or in a less restrictive sense if iy, (N, B, 0)=Cij i\, Br, ;).

3.5.2.3 Directional total reflectivity p'.—The directional-hemispherical
total reflectivity is the fraction of the total energy incident from a single
direction that is reflected into all angular directions. The spectral
energy from a given direction that is intercepted by the surface is
ix, (A, B, 6) cos B dwdAdA. The portion of this energy that is reflected is
Pi(A, B, 8)iy i\, B, 6) cos B dwd\dA. If these quantities are integrated
over all wavelengths to provide total values, the following definition is
formed:

Directional-hemispherical total reflectivity (in terms of directional-
hemispherical spectral reflectivity) = p'(B, 6)

_d%0/(8, 6)
&Q}(B, 0)

f " DA, B, 0)if, (A, B, B)dA
= (3-41a)
—L l;\, i(x’ Bs O)d)\
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Another directional total reflectivity specifies the fraction of radiation
reflected into a given (Br, 6;) direction when there is uniform irradiation.
The total radiation intensity reflected into the (8-, 6;) direction when
the incident intensity is uniform for all directions is

ir(Br, ‘9r)=J::c ix, r(A, Br, 0r)dk=fo ix, iV PAN, Br, 6r)dA

where p\(A, Br, 0r) was discussed in connection with equation (3-27).
Then the reflectivity can be defined as the reflected intensity divided
by the incident intensity:

Hemispherical-directional total reflectivity (for uniform irradia-
tion) = p'(B-, 0r)

f " i(M By, 6 i (VA
==1 ~ (3—41b)
j i§\, (N dA

0

3524 Reciprocity.—Equations (3—41a) and (3—41b) are now compared,
bearing in mind that the latter is restricted to uniform incident intensity.
With this restriction, from equation (3-28) pi(A, B, 6)= pa(X, Br, Or),
it is alsq found that

p'Br, 6)=p'(B, 0) (3-42)

where (B, 6;) and (B, 6) are the same angles when there is a fixed spectral
distribution of the incident radiation such that

ix, dx, B, 6)=Cix (M)

3.5.2.5 Hemispherical total reflectivity p.—If the incident total radiation
arrives from all angles over the hemisphere, the total radiation inter-
cepted by a unit area at the surface is given by equation (3-17a). The
amount of this radiation that is reflected is

dQ,= dA L o’ (B, 0)i}(B, 0) cos B dw

The ratio of these two quantities is then the hemispherical total reflec-
tivity, which is the fraction of all the incident energy that is reflected
including all directions of reflection; that is,
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Hemispherical total reflectivity (in terms of directional-hemispherical
total reflectivity) = p

_d0r_d4 f : y _

T 40, dQi e p'(B,0)i;(B,0) cos B dw (3-43a)
Another form is found by using d2Q,, {)) which is the incident hemispher-
ical spectral energy intercepted by the surface. The amount of this that
is reflected is pa(A)d?Qx,; where pa(A) is the hemispherical spectral
reflectivity from equation (3—29). Then integrating yields

Hemispherical total reflectivity (in terms of hemispherical spectral
reflectivity) = p

f " pr (M) 20, i(N)

3.5.3 Summoary of Restrictions on Reciprocity Relations Between
Reflectivities

In table 3-1II, a summary is presented of the restrictive conditions

TABLE 3-III. — SUMMARY oF RECIPROCITY RELATIONS BETWEEN REFLECTIVITIES

Type of quantity Equality Restrictions
A. Bidirectional spectral | p}(\, B, 8, B:, 6,) None
(eq. (3-22)) =pi(A, Br, 6, B, 0)

B. Directional spectral AN, B, )=pi(\, Br, 0, | pi(A, Br, 6,) is for uniform

(eq. (3-28)) where 8=g8. incident intensity
and 0=10, or py(A) independent of
B, 8, B;, and 6,
C. Bidirectional total p"(B, 6, B, 6,) B i\, B, 0)=Cii i\, Br, 6,)

or P:(Bv 99 ﬁ"! 0")

(eq. 3-40) =p"(Br. 6. B, 6) independent of wavelength
D. Directional total P'B, 0)=p'Br 6, One restriction from both
(eq. (3—42)) where B8=48, B and C

and =6,




84 THERMAL RADIATION HEAT TRANSFER

necessary for application of the various reciprocity relations for reflec-
tivities.

3.6 RELATIONS AMONG REFLECTIVITY, ABSORPTIVITY, AND EMISSIVITY

From the definitions of absorptivity and reflectivity as fractions of
incident energy absorbed or reflected, it is evident that for an opaque
body (no radiation transmitted through the body) some simple relations
exist between these surface properties. By using Kirchhoff’s law (see
section 3.4.7) and taking note of the restrictions involved, further
relations can be found in certain cases between the emissivity and the
reflectivity.

Because the spectral energy per unit time d?Q, ; incident upon d4
of an opaque body from a solid angle dw is either absorbed or reflected,
it is evident that

dso}l\,i(}" B’ 0) zdso}’\,a()\a B’ 0» TA) +d30;,r()\’ Ba 0’ TA)

or

dsQ)’\,a(Av ﬁ’ 0’ TA) d3Q)’\,r(A’ Bv e’ TA):

0. (M.B.6) | 40 (N, B.0) (3-44)

Since the energy is incident from the direction (8, 6), the two energy
ratios of equation (3—44) are the directional spectral absorptivity (eq.
(3-10a)) and the directional-hemispherical spectral reflectivity (eq.
(3—24)), respectively. Substituting gives

a(\,B,0,Ta) +py(X,B,0,Ts)=1 (3-45)

Kirchhoff’s law (eq. (3-12)) can then be applied without restriction to
yield

E;\(A,B, 03 TA)+P):(}\»B, 99 TA):I (3_4’6)

When the total energy arriving at d4 from a given direction is con-
sidered, equation (3—44) becomes

dzoa’(Bs 0, TA)+ sz;(Ba 09 TA):l

220.(B, 0)  d*0)(B, 0) (3-47)

Substituting equation (3—14a) and (3—41a) for the energy ratios results in
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a'B, 0, Ta)+p'(B, 0, TyH=1 (348)

The absorptivity is the directional total value, and the reflectivity is
the directional-hemispherical total value.

Kirchhoff’s law for directional total properties (section 3.4.4) can then
be applied to give

G,(Bs 0, TA)"'P(B, 09 TA)=]- (3_4'9)

under the restrictions that the incident radiation obeys the relation
ix.i(A, B, 0)=C(B, 0)is(\, T4) or the surface is directional gray.

If the incident spectral energy is assumed to be arriving at dA4 from
all directions over the hemisphere, equation (3—44) gives

&?Qr o\, Ta) | d?0n, N, T4) _ _
d*Qx, (M) 20, %) ! (3-50)

Equation (3-50) can then be written as
ax(\, Ta)+pa(A, T)=1 (3-51)

where the radiative properties are hemispherical spectral values from
equations (3-16) and (3-29). Substitution of the hemispherical spectral
emissivity ex(A, T4) for ax(A, T) in this relation is valid only if the
intensity of incident radiation is independent of incident angle, that is,
it is uniform over all incident directions, or if the a) and €, do not

depend on angle (see section 3.4.7). Under these restrictions, equation
(3-51) becomes

(A, Ty)+pa(A, Ty)=1 (3-52)

If the incident energy on dA4 is summed over all wavelengths and
directions, equation (3—44) becomes

dQo(T4) +er(TA) _
dQ; dQ;

1 (3-53)

The energy ratios are now the hemispherical total values of absorptivity
and reflectivity (eqs. (3-18) and (3-43a), respectively), and equation
(3-53) becomes

a(Tq) +p(Ty)=1 (3-54)
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Again, certain restrictions apply if €(T4) is substituted for a(T,) to
obtain

e(Ty) +p(Th)=1 (3-55)

The principal restrictions on the validity of this relation are that the
incident spectral intensity is proportional to the emitted spectral in-
tensity of a blackbody at T4 and the incident intensity is uniform over
all incident angles; that is, ix.i(A) =Cils (N, T4). Other special cases
where the substitution a(7s) = €(T4) can be made are listed in section
3.4.7.

When the body is not opaque so that some radiation is transmitted
entirely through it, a transmitted fraction must be introduced. This
topic is more properly discussed in connection with radiation in ab-
sorbing media.

EXAMPLE 3-5: Radiation from the Sun is incident on a surface in
orbit above the Earth’s atmosphere. The surface is at 1800° R, and the
directional total emissivity is given in figure 3-3. If the incident energy
is at an angle 25° from the normal to the surface, what is the reflected
energy flux?

From figure 3-3 € (25°, 1800° R)=0.8. The spectrum of radiation
from the Sun is similar to that of a blackbody. Section 3.4.7 shows that
' (25°, 1800° R)=¢€'(25°, 1800° R)=0.8, only when the incident spec-
trum is proportional to that emitted by a blackbody at T,=1800° R.
This is not the case here since the Sun acts like a blackbody at 10 000°R.
Hence, o' # 0.8, and without a’ we cannot determine p'; the emissivity
data given are insufficient to work the problem.

Normal spectral emissivity, €5(\ B =0,1000° R}
-y
|

| | | | A
0 2 4 6 8 10 %
Wavelength, A, pm

FIGURE 3—6. — Directional spectral emissivity in normal direction for example 3-6.
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EXAMPLE 3-6: A surface at T4=1000° R has a spectral emissivity in
the normal direction that can be approximated as shown in figure 3-6.
This surface is maintained at 1000° R by cooling water and is then
enclosed by a black hemisphere heated to T;=3000° R. What will the
reflected intensity be into the direction normal to the surface?
From equation (3—46)
P;‘O\, B= Oos TA) =1- G;\(As B= 009 TA)
which is the reflectivity into the hemisphere for radiation arriving from

the normal direction. From reciprocity, for uniform incident intensity
over the hemisphere,

PAN, Br=0° T4)=pi(\, B=0°, T4)

Hence, the reflectivity into the normal direction resulting from the
incident radiation from the hemisphere is (by use of fig. 3—6)

PAO <A< 2, B,=0° Ty)=0.7
PA2 <A< 5, B,=0° Ta)=0.2

PG <A< o, B,=0°, T)=0.5

The incident intensity is i), ;(A, T5)=i) (A, 3000° R). From the relation
preceding equation (3~41b), the reflected intensity is

i1(Br=07)= f " o (N, TOPLA, Br=0°, Ta)d\
0

_oT? f [ew()\, T)
0

'y ol}

PN =07, T AOT) |
From equation (2—27) this becomes

) oT}
l;.(Br = 00) =— (0‘7F0'2Ti+ 0'2F2Ti_5Ti+ O.Ssri_w)
™

= 01712 ~———(30)4[0.7(0.347) +0.2(0.869 — 0.347)

+0.5(1—0.869) |
=18 200 Btu/(hr) (sq ft) (m) (sr)
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3.7 CONCLUDING REMARKS

In this chapter, a precise system of nomenclature has been introduced,
and careful definitions of the radiative properties have been given. The
defining equations are summarized in table 3-1 for convenience, along
with the symbols used here.

By using these definitions, it was possible to examine the restrictions
on the various forms of Kirchhoff’s law relating emissivity to absorptivity.
These restrictions are sometimes a source of confusion, and it is hoped
that the summary given (table 3-1I, section 3.4.7) will make clear the
conditions when a can be set equal to €. These restrictions are also
invoked when deriving the relation e+ p=1 from the general relation
a+ p=1 for opaque bodies.

The detailed definitions given made it possible to derive the reciprocal
relations for reflectivities and examine the restrictions involved. These
restrictions are listed in a convenient summary in table 3-III, section
3.5.3.
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Chapter 4. Prediction of Radiative Properties by
Classical Electromagnetic Theory

4.1 INTRODUCTION

James Clerk Maxwell, in 1864, published an article defining what is
generally conceded to be the crowning achievement of classical physics:
the relation between electrical and magnetic fields and the realization
that electromagnetic waves propagate with the speed of light, indicating
strongly that light itself is in the form of an electromagnetic wave (ref. 1).
Although quantum effects have since been shown to be the controlling
phenomena in electromagnetic energy propagation, it is possible and
indeed necessary to describe many of the properties of light and radiant
heat by the classical wave approach.

It will be demonstrated in this chapter that the reflectivity, emissivity,
and absorptivity of materials can in certain cases be calculated from the
optical and electrical properties of the materials. The relations between
the radiative properties of a material and its optical and electrical
properties are found by considering the interaction that occurs when an
electromagnetic wave traveling through one medium is incident on the
surface of another medium.

The analysis will be based on the assumption that there is an ideal
interaction between the incident waves and the surface. Physically this
means that the results are for optically smooth, clean surfaces that
reflect in a specular fashion. The wave propagation and surface inter-
action will be investigated here in a somewhat simplified fashion by using
Maxwell’s fundamental equations relating electric and magnetic fields.
For ideal surface conditions, it is possible to perform more accurate
property computations by using theory that is more rigorous than the
wave analysis presented here. However, the labor involved is generally
not justified, because neitker the simplified nor the more sophisticated
approach can account for the effects of surface preparation. The depar-
tures of real materials from the ideal materials assumed in the theory
are often responsible for introducing large variations of measured
property values from theoretical predictions. These departures are
caused by factors such as impurities, surface roughness, surface con-
tamination, and crystal structure modification by surface working.

Although in practice there can be large effects of surface condition,
the theory presented here does serve a number of useful purposes. It

295-763 OL-68—7 89



90 THERMAL RADIATION HEAT TRANSFER

provides an understanding of why there are basic differences in the
radiative properties of insulators and electrical conductors, and reveals
general trends that help unify the presentation of experimental data.
These trends are also useful when it is required for engineering calcula-
tions to extrapolate limited experimental data into another range. The
theory has utility in the theoretical understanding of the angular behavior
of the directional reflectivity, absorptivity, and emissivity. Since the
electromagnetic theory applies for pure substances with ideally smooth
surfaces, it provides a means by which one limit of attainable properties
can be computed; for example, the maximum reflectivity or minimum
emissivity of a metallic surface can be determined.

The derivation of radiative property relations from classical theory
is carried out in some detail in sections 4.3 through 4.5. The results are
then gathered and their use demonstrated in section 4.6. Those readers
interested only in the use of the results for property predictions are
invited to pass over the derivation portions to section 4.6.

4.2 SYMBOLS

C, C, constants in Planck spectral energy distribution
speed of electromagnetic wave

o

Co speed of electromagnetic wave in vacuum

E amplitude.of electric intensity wave

e emissive power

H amplitude of magnetic intensity wave

K dielectric constant, y/v,

n refractive index

n complex refractive index, n— ik

Te electrical resistivity

S instantaneous rate of energy transport per unit area
S Poynting vector, eq. (4—24)

T absolute temperature

t time

X, ¥,z coordinates in Cartesian system referenced to interface

between media (fig. 4-1)

x',y',z coordinates in Cartesian system referenced to wave
propagating in a medium (fig. 4-1)

B angle measured from normal of surface; cone angle

y permittivity

€ emissivity

7} circumferential angle

K extinction coefficient

A wavelength
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magnetic permeability

7

v frequency

p reflectivity

X angle of refraction

) angular frequency

f integration over solid angle of entire enclosing hemisphere
o

Subscripts:

A property of body or surface 4

b black

i incident

M maximum value

n normal

(/] in a vacuum

r reflected

s specular

t transmitted

X, Y, 2 components in x, ¥, or z direction
x',y', 2z components in x’, y', or z’ direction
A spectral

1,2 medium 1 or 2

1 perpendicular component

I parallel component

Superscript:

directional quantity

4.3 FUNDAMENTAL EQUATIONS OF ELECTROMAGNETIC THEORY

Maxweil’s equations can be used to describe the interaction of electric
and magnetic fields within any isotropic medium, including a vacuum,
under the condition of no accumulation of static charge. With these
restrictions the equations are, in mks units,

UxH=yE L E @-1)
d re
= oH .
VXE=—p 4-2)
V-E=0 4-3)
V-H=0 d-4)
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TABLE 4-1.—QUANTITIES FOR USE IN ELECTROMAGNETIC EQUATIONS IN MKS UNITS

Symbol Quantity Units Value
c Speed of electromagnetic mfsec | e
wave propagation.
Co Speed of electromagnetic m/sec 2.9979 x 108
wave propagation in
vacuum.
E Electric intensity................. N/C (newtons/ | .eeevveviriniiieninnnnns
coulomb)
H Magnetic intensity.............. Clim)(sec) | erveeriiiiininiiniennns
K Dielectric constant, Y/¥o....ccod  covrerviiiiiiiiiiniens | e
re Electrical resistivity............. (ohm)(m), | oo
(N)(m?)(sec)/C?
S Instantaneous rate of energy (N) (m)/(sec) (m2) | .cooevriininiiniinninnns
transport per unit area.
X, Y,z Cartesian coordinate m | e
2,y .,z position.
k% Electrical permittivity........... C2H(NY(m2) | e
Yo Electrical permittivity of C2/(N) (m?) 1 x 10-8
vacuum. 47 X 8.9875
I Magnetic permeability.......... (N) (sec?)/C2 | cevviiiiiiiiiinenns
Mo Magnetic permeability of (N) (sec?)/C? 47 X 10-7
vacuum.

where H and E are the magnetic and electric intensities, respectively, y
is the permittivity, re is the electrical resistivity, and . is the magnetic
permeability of the medium. The mks units for these quantities are shown
in table 4-1. Zero subscripts denote quantities evaluated in a vacuum.

The solutions to these equations will reveal how radiation waves travel
within a material and what the interaction is between the electric and
magnetic fields. By knowing how the waves move in each of two adjacent
media and applying coupling relations at the interface between the
media, the relations governing reflection and absorption will be
formulated.

4.4 RADIATIVE WAVE PROPAGATION

The derivation of radiative wave propagation for perfect dielectrics
will be considered in section 4.4.1, and then media of finite electrical
conductivity will be analyzed in section 4.4.2.




PREDICTIONS BY ELECTROMAGNETIC THEOQRY 93

44.1 Propagation in Perfect Dielectric Media

For simplicity, the situation will first be considered where the medium
is a vacuum or other insulator havmg an electrical resistivity so large
that the last term in equation (4-1), E/re, can be neglected. With this
simplification, equations (4—1) and (4—2) can be written out in Cartesian
coordinates to provide two sets of three equations relating the x, y, and
z components of the electric and magnetic intensities, that is,

oH: _oH, __ oF.

ay oz ) ot (4-5a)
aa_lj:—%= Y‘%Et_z (4-5¢)
= (4-6a)
P e (4-6c)
Froin equations (4-3) and (4—4), we get
Ly 0y 35 o
and
oH, oM, oM. _, (4-8)

ox ay 9z

The interaction of a wave of incident electromagnetic radiation with a
material will be considered. The coordinate system z, ¥, z will be fixed
to the material with the x direction normal to the surface. A second

coordinate system x', y', z’ is fixed to the path of the incident wave
(fig. 4-1).
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Y

Zl

~Normal to

/ y-z plane
AN
v

x'

Plane of
incidence~’

/

|
]
!
|
i
'
X

FIGURE 4-1. —Definition of coordinate systems.

For simplicity, a plane wave of incident radiation is considered
that is propagating in the x’ direction. From the definition of a plane
wave, this wave has all quantities concerned with it constant over any
y'—z' plane at any given time. Hence 4/9y'=49/3z' =0. For these
conditions, equations (4—5) to (4-8) reduce to the following:

0=y 2z (4-9a)

_ a;i 2 agtu' (4-9b)
%z 32’1 2 (4-9¢)
0=—p 31;:' (4-10a)
_%z —u 9% (4-10b)
aaEx v _ #ig% (4-10¢)
Ey_ (-11)
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oHy
=0 (4-12)

The H components are then eliminated by differentiating equations
(4-9b} and (4-9c) with respect to ¢t and equations (4-10b) and (4-10c)
with respect to x’ to obtain

e e
«;:iy,'z y 3;12 (4-13b)
e (i
a;ﬁ,;' —— 3;1{; (4-14b)

Equations (4-13a) and (4-14b) are then combined to eliminate H,.
and similarly (4-13b) and (4-14a) to eliminate H,. This provides the
following two equations:

K on e -15a)
and
a2E,,  92E,
T (4-15b)

These wave equations govern the propagation of the y' and z' compo-
nents of the electric intensity in the x’ direction. For simplicity in the
remainder of the derivation, it will be assumed that the electromagnetic
waves are polarized such that the vector E is contained only within the
x'-y’ plane (see fig. 4-2). . Then E, and its derivativgs are zero and
equation (4—15b) need not be considered. The vector E will have only
x’ and y' components. .

With regard to the x’ components of E and H, from equations (4-9a),
(4-10a), (4-11), and (4-12), 9E /3t = IE /3%’ = 9H 2|3t = 0H p/3x’ = 0.
Hence, the electric and magnetic intensity components in the direction
of propagation are both steady and independent of the propagation
direction, x'. Consequently, the only time-varying component of E is
Ey as governed by equation (4-15a). Since this component is normal
to x', the direction of propagation, the wave is a transverse wave.
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y|

FIGURE 4—2. — Electric field wave polarized in x'-y' plane, traveling in x’ direction with
companion magnetic field wave.

Equation (4—15a) is recognized as the wave equation that describes
the propagation of the wave component E, in the x' direction. The
general solution of this equation is

E,=f (x' - ——\/‘#:y) + g(x' + ﬁ) (4-16a)

where f and g are any differentiable functions. The f function provides
propagation in the positive x' direction, while the g function accounts for
propagation in the negative x’' direction. Since the present discussion
deals with a wave moving in the positive direction, only the f function
will be present in the analysis.

To obtain the wave propagation speed, consider an observer moving
along with the wave; the observer will always be at a fixed value of E,.
The x' location of the observer must then vary with time such that the

argument of f, x' — (t/Vuy) is also fixed. Hence, dx’/dt=1/V wy. The
relation
t
E,= ( '——) 4—16b

thus represents a wave with y’ component E, propagating in the positive

x' direction with speed 1/Vuy. In free space, the propagation speed of

the wave is co, the speed of electromagnetic radiation in vacuum, so that
f ececth

there is the relation c,= V1/u,y,. 1!

' Independ of fe, Yo, and ¢, validate the result. The fact that Maxwell's equations predict that

all electr ic radiation propag in with speed ¢, was considered convincing evidence that light is a
form of electromagnetic radiation, and was one of the early triumphs of the electromagnetic theory.
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Accompanying the E, wave component is a companion wave compo-
nent of the magnetic field. If equation (4—9b) is differentiated with
respect to x’ and equation (4—10c) with respect to ¢, the results can be
combined to yield

82Hz':asz'
Y orr  ax

4-17)

Equation (4-17) is the same wave equation as equation (4—15a). Hence,
the H. component of the magnetic field propagates along with E, as
shown in figure 4-2.

Any propagating waveform as designated by the Sffunction in equation
(4-16b) can be represented using Fourier series as a superposition
of waves, each wave having a different fixed wavelength. Let us then
consider only one such monochromatic wave, and note that any wave-
form could then be built up from a number of monochromatic compo-
nents. For convenience in later portions of the analysis, the wave com-
ponent will be given in complex form.

Suppose that at the origin (x’ =0) the waveform variation with time is

Ey=Ey uexp (int)

A position on the wave that leaves the origin (x' = 0) at time ¢, arrives at
location x' after a time interval x'/c, where c is the wave speed in the
medium. A wave traveling in the positive x’ direction is then given by

Ey=E mexp [iw (t—x-c—)]
or
Ey=Eymexp [iw (t—Vuyx')] (4-18a)

This is a solution to the governing wave equation (eq. 4-15a) as shown
by comparison with equation (4-16b). If desired, other forms of the
solution can be obtained by using the relations v =27y = 2c/N = 27rcof Ny,
where A and A, are the wavelengths in the medium and in a vacuum,
respectively.

The simple refractive index n is defined as the ratio of the wave
speed in vacuum ¢, to the speed in the medium ¢=1/Vuy. Hence,
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n="_"="¢o My Yo
and equation (4—18a) can be written as
Ey=E, mexp [iw (t—cﬁx'ﬂ (4—18b)
[

As shown by equation (4-18), the wave propagates with undiminished
amplitude through the medium. This is a consequence of the assumption
that the medium can be regarded as a perfect dielectric, that is, one with
zero conductivity. In many real materials the conductivity is significant
and the last term on the right in equation (4-1) cannot be neglected. As
will now be shown, the inclusion of this term will lead to an attenuation
of the wave.

442 Propagation in Isotropic Media of Finite Conductivity

For simplicity, a single plane wave is again considered as described by
equations (4-18). If an exponential attenuation with distance is introduced
(it will be shown by equations (4-21) to (4-23) that this obeys Maxwell’s
equations), the wave takes the form

E,=Eyu exp [iw (t ——cﬁx’)] exp (—C2 Kx') (4-19a)

4] o

where « is termed the extinction coefficient for the medium. The attenua-
tion term indicates an absorption of the energy of the wave as it travels
through the medium. The present form of the attenuation exponent was
chosen so that the exponential terms could be combined into the relation

Ey=Ey uexp {iw [t— (n—ix) x_]} (4-19b)

Co

Using complex number relations, equation (4-19b) can be written for
later reference as

Ey=Eyu (cos { ® [t— (n—ik) —Z—;]} + i sin { ) [t —(n—ik) %]})

(4-19c¢)
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A comparison of equation (4-19b) with equation (4-18b) shows that the
simple refractive index n has been replaced by a complex term that will
be termed the complex refractive index 7. Thus,

n=n-—ik (4—20)

It remains to be shown that equation (4~19b) constitutes a solution
of the governing equations with the last term on the right of equation (4-1)
included. With this term retained, equation (4-15a) takes the form

oE, o2E, oFE,,
Ohy 0Ly HKHOLy _
Y o 0x'? r. ot (4-21)

The waveform of equation (4-19b) is substituted into equation (4—21)
and the following equality results:

. o A
couy= (n—in) 2+ (4-22a)

Te

where X, is the wavelength in a vacuum. Equation (4-22a) provides the
relation between the wavelength and the properties of the medium neces-
sary for the wave to satisfy Maxwell’s equations. Equating the real and
imaginary parts of equation (4-22a) yields

n?— k%= wyc? (4-22b)
and
— Bty -
nk i {4-22c¢)

These equations may be solved for the components of the complex
refractive index, n and «, in terms of &, Y, Ao, Co, and re to yield

2 — [L')’C,z, . A0 2
nt==5= [1+ 14 (27Tc.,re‘y) ] (4—23a)

and

L Hyeil \/ ( Ao )2]
K=t [ Ty e (4-23b)
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In the solutions, positive signs were chosen in front of the square roots
since n and k must physically be positive real quantities.

Comparison of equation (4—18b), the solution to the wave equation for
dielectric media, with equation (4—19b), the solution of the wave equation
for conducting media, shows the solutions to be identical with one excep-
tion: The simple refractive index n appearing in the dielectric solution is
replaced for conductors by the complex refractive index (n —ik). This is a
most important observation. It means that any general relations that we
derive for dielectrics will also hold for conductors provided that we
substitute the complex index (n —ik) for the simple refractive index n.
Extensive use will be made of this analogy in succeeding sections.

443 Energy of an Electromagnetic Wave

The instantaneous energy carried per unit time and per unit area by
an electromagnetic wave is given by the cross product of the electric
and magnetic intensity vectors. This product is called the Poynting
vector S where

—

S=ExH

and according to the properties of the _cross product, S is a vector
propagating at right angles to the E and H vectors in a direction defined
by the right-hand rule. For the plane wave under consideration as shown
in figure 4-2, the propagation is in the positive x’ direction. The magni-
tude of S is given for the plane wave by

S| =E,H. (4-24)

If E, is given by equation (4—19b), then equation (4-10c), which holds
for conductors as well as dielectrics, can be used to find H. as follows:

oH, OoE, —iw . lwn
%l _ iV E,=—22F
at dx’ Co (n LK) v Co Y
Then noting the ¢ dependence of E in equation (4—19b) and integrating
yield the following relation between electric and magnetic intensities:

Hy=—Ey (4-25)

The constant of integration has been taken to be zero. It would corre-
spond to the presence of a steady magnetic intensity in addition to that
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induced by E and is zero for the conditions of the present discussion.
When H. is substituted in equation (4—24), the magnitude of the
Poynting vector becomes

Is| =Mi Bz, (4-26)

Thus, the instantaneous energy per unit time and area carried By the
wave is proportional to the square of the amplitude of the electric
intensity.

Because |§| is a monochromatic property, it is seen by examination
of its definition to be proportional to the quantity we have called spectral
radiant intensity. For radiation passing through a medium, the exponen-
tial decay factor in the radiant intensity must then be, by virtue of equa-
tion (4-26), equal to the square of the decay term in E,. Thus, from
equation (4-19a) the intensity decay factor is exp (— 2wkx’/c,) or
exp (— dmkx'[\,).

4.5 LAWS OF REFLECTION AND REFRACTION

In the previous derivations, the wave nature of the propagating
radiation has been revealed and the characteristics of movement through
an isotropic medium have been found. The analysis provided a complex
refractive index which is related to the velocity of propagation and the
wave altenuation as it moves through a medium. Now the interaction of
the electromagnetic wave with the interface between two media will be
considered. This will provide laws of reflection and refraction in terms
of the complex refractive indices which are in turn related to the electric
and magnetic properties of the media by means of equations (4-23).

For simplicity throughout this discussion a simple cosine wave will
be utilized as obtained by retaining only the cosine term in -equation
(4—19c¢). This wave is moving in the x’ direction and strikes the interface
between two media as shown in figure 4-3. The plane containing both
the normal to the interface and the incident direction x' is defined as
the plane of incidence (fig. 4-1). In figure 4-3 the coordinate system has
been drawn so that the y' direction is in the plane of incidence. The
interaction of the wave with the interface depends on the wave orien-
tation relative to the plane of incidence. For example, if the amplitude
vector of the incident wave is in the plane of incidence (amplitude vector
in the y’ direction), the amplitude vector is at an angle to the interface.
If the amplitude vector is normal to the plane of incidence (amplitude
vector in z" direction), the incident wave vector is parallel to the interface.

Figure 4-3 shows a plane transverse wave front propagating in the
x" direction. Although the wave will in general bend as it moves across
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yl

_-rPlane wave front at
-~/ successive times

ntert Ax'y, /?3 Mediuml
iertace }iﬁ // Medium 2
Ay = Axisin B /

Wi\\é\

FIGURE 4-3.—Plane wave incident upon interface between two media.

the interface because of the difference in propagation velocity in the
two media, the wave will be continuous, so that the velocity component
tangent to the interface (y component) is the same in both media at the
interface. This continuity relation will be used in deriving the laws of
reflection.

Consider now an incident wave E||,; polarized so that it has amplitude
only in the x’ —y’ plane (fig. 4-4) and, hence, is parallel to the plane of
incidence. From equation (4-19c), retaining only the cosine term for
simplicity, the wave is characterized by

Ey,i=Ew, i cos <wt_nwx ) 4-27)

Co
From figure 4—4(a), the components of the incident wave in the x, y, z

coordinate system are (components are taken to be positive in the posi-
tive coordinate directions)

E; i=—F)isinf (4—28a)
E, i=FEy,icos B (4—28hb)

E.=0 (4—28c¢)
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Incident wave

(a)

Medium 1

Medium 2

1 Refracted wave

Reflected wave

,~Plane of incidence

Ell,r Sr
~Normal
to inter_/Hr,
B face
Eit
He o A%

(b)

(a) Plane electric field wave polarized in x-y plane striking intersection of two media.
(b) Electric intensity, magnetic intensity, and Poynting vectors for incident wave polarized

in plane of incidence.

FIGURE 4—4. —Interaction of electromagnetic wave with boundary between two media.

Substituting equation (4-27) into equations (4—28) and noting that x’,
the distance the wave front travels in a given time, is related to the y
distance the front travels along the interface by
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x'=y sin B (4-29)

as can be seen from figure 4-3, we obtain for the incident components

E; i=—Euy,i sin.B cos [w (t—n—’y—&é) ] (4-30a)

Co
Ey i=Ewy)),i cos B cos [m <t—ﬂ}—fcsll—é) ] (4—30b)
0
E. =0 (4-30c)

Upon striking the bounding y — z plane between medium 1 and medium
2, the incident wave separates into a portion Ejj, , reflected at angle 8,
and a portion E|;,, refracted at angle x and transmitted into medium 2.
From the geometry shown in figure 44, the components in the positive
coordinate directions of the reflected ray evaluated at the interface are

E: r=-—Ep), r sin B, cos [w (t_wér) ] (4-31a)

Co

Co

E, r=—Ey,r cos Br cos [w (t—-’lﬁg—ﬁl) ] (4-31b)

Ez, =0 (4-31c)

The direction of E)|,» was drawn such that E}, », H,, and S, would be
consistent with the right-hand rule connecting the Poynting vector with
the E and H fields. In a similar fashion from figure 4—4, the components
of the refracted portion of the wave are

E: t=—Epm), ¢ sin X cos [w (t—ﬂy—cs:ﬂ) ] (4-32a)
= in

E, (=Eum,: cos x cos [w <t—wcs—l——x—) ] (4-32b)

E. =0 4—32c)

Certain boundary conditions must be followed by the waves at the
interface of the two media. The sum of the components, parallel to the
interface, of the electric intensities of the reflected and incident waves
must be equal to the intensity of the refracted wave in the same plane.
This is because the intensity in medium 1 is the superposition of the
incident and reflected intensities. For the polarized wave considered
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here, this condition gives the following for the equality of the y compo-
nents (parallel to interface) in the two media:

{Bu. i cos g cos [ (62 8) ]

Co

Co

—FEu), - cos Br cos [w (!—M) ]

=FEum), ¢ cos x cos [w (t—w-)] } 4-33)
r=0

Co
Since equation (4-33) must hold for arbitrary ¢ and y and the angles
B, Br, and x are independent of ¢ and y, the cosine terms involving time
must be equal. This can only be true if
nu sin B=n, sin B,=ny sin x (4-34)
which provides that
B=B: (4-35)
The angle of reflection of an electromagnetic wave is thus equal to its

angle of incidence (rotated about the normal to the interface through a
circumferential angle of §=1). These are the relations that define

Equation (4-34) also yields the following relation between B and x:

siny_ mi_ m—iK
sin B ﬁz nz—iKz

(4-36)

where the definition of n has been substituted from equation (4—20).

For the general case where x; and k; are not zero, equation (4—-36)
shows that sin x must be complex since 7, and 7, are complex quantities.
This complex ratio of angles can be interpreted to mean that the inter-
action of the incident wave with the interface will result in both phase
and amplitude changes for the refracted wave.

With the cosine terms involving time equal and by using equation
(4-35), there also follows from equation (4—33)

(Em, i cos B—Ey, r cos B=FEu), cos X)z=0 4-37)

This can be used to find how the reflected electric intensity is related

295-763 OL-68—8
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to the incident value. The refracted component Eyj, . must be eliminated
and to accomplish this the magnetic intensities must be considered.

The magnetic intensity parallel to the boundary must be continuous
at the boundary plane. The magnetic intensity vector is perpendicular
to the electric intensity; since the electric intensity being considered
is in the plane of incidence, the magnetic intensity will then be parallel
to the boundary. Continuity at the boundary provides that

(Hi+ Hy=H)zo (4-38)

The relation between electric and magnetic components was shown
in equation (4—25). Although for simplicity this relation was derived for
only the specific components H, and Ey, it is true more generally so
that the magnitudes of the E and H vectors are related by

|H| = fc |E| (4-39)

Fer both dielectrics and metals the magnetic permeability is very
close to that of a vacuum so that g = g,. Then equation (4-38) can be
written as

(mEmy, i+ ;lEMH, r=;2EM||,t)x=o (4—40)

Equations (4—37) and (4—40) are combined to eliminate Ey)),: and give
the reflected electric intensity in terms of the incident intensity

cos B m
Euji,r _cos X m

Eujl,i cos B+Z—l_l (4-41)

cos X N2

If the preceding derivation is repeated for an incident plane electric
wave polarized perpendicular to the incident plane, the relation between
reflected and incident components is

cos X m
Evy,r cosf  n:

EM_L,i_ cos X —ﬁl (4 42)
cos B N2

The general relations in this section will now be interpreted for the
specific cases of dielectrics and metals.
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4.5.1 Incidence and Reflection of a Wave from Dielectric or Transparent
Media (x Negligible Compared to n)

When each of the media either is dielectric or transparent, then
k1 =kz2—> 0 and equation (4—36) reduces to

sinxy_ m
——o=— 4—4
sin 8 ng (4-43)
This relates the angle of refraction to the angle of incidence By means
of the refractive indices. Equation (4—43) is known as Snell’s law. For
the often encountered case when the incident wave is in air (n; = 1),
then n,=sin 8/sin x.

For dielectric media, equation (4—41) reduces to

cosB_m
Ey),r_cos x n,
Ewii cosB m
cos X N

(4-44)

Then equation (4—43) can be used to eliminate n,/n, in terms of
sin x/sin B. With some manipulation using trigonometric identities, the
resulting expression can be cast into the form

Eyjj,r__tan (B—x)

4_
Eu),i tan (8+x) (4-45)
Similarly from equation (4—42)
cosx m
Eui,r__cosB ny  sin(B—x) _
Ev.,i cosx m sin (B8+x) (4-46)
—_+_
cos 3 ng

The energy carried by a wave is proportional to the square of the
amplitude of the wave as shown by equation (4-26). Squaring the ratio
Eum, r/Ewu, ; therefore gives the ratio of the energy reflected from a surface
to the energy incident upon the surface from a given direction. This
ratio was defined in section 3.5.1.3 as the directional-hemispherical
reflectivity. Because electromagnetic radiation for the ideal conditions
examined here was shown by equation (4-35) to reflect specularly and
because the electromagnetic theory relations are based on monochromatic
waves, the energy ratio more exactly gives the directional-hemispherical
spectral specular reflectivity as discussed in section 3.5.1.6.2. The
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spectral dependence arises from the variation of the optical constants
with wavelength.

The values of p)(A, B, 6) for incident parallel and perpendicular
polarized components are then obtained as

2
ol s(\, B, O)= (gM ,r)
M, i

(4—-47)

’ _ EM.L,T>2
p)u.s(}" .B’ 0)—' (EML,i

The subscript s denotes a specular reflectivity, and the notation is that
used in section 3.5.1.6.2. Because all reflectivities predicted by electro-
magnetic theory are specular, the subscript s will not be carried from
this point on in order to simplify an already complicated notation. Fur-
ther, because of the assumption of isotropic behavior at the surface
for the ideal surfaces considered, there is no dependence on the angle
0: hence, this variable will no longer be retained.

For unpolarized incident radiation the electric field has no dehnite
orientation relative to the incident plane and can be resolved into
parallel and perpendicular components that are equal. Then the direc-
tional-kemispherical spectral specular reflectivity is the average of
pr(A, B) and py (A, B). By using equations (4—45) to (4—47), the result is

JiA, B o5, (A,
Pl B)szu( ﬂ)2Pu( B)

_1 |:tzsm2 (B—)o+ sin? (B—-x)] _1 sin? (B —x) [] + cos? (B+x)
2 |tanz (B+%) sin? (B+x)] 2sin?(B+X) cos? (B—x)

] (4-48)

Equation (4-48) is known as Fresnel’s equation, and it gives the direc-
tional-hemispherical spectral reflectivity for an unpolarized ray incident
upon a dielectric medium. The relation between x and B is given by
equation (4—43).

In the special case when the incident radiation is normal to the inter-

face between the two media, cos B=cos x=1 and equations (4—44)
and (4—46) yield

1™
EM||,r _ IEM_L,r _ ﬂz:flzjnl (4_49)
EMH,i EM_L,i 1+ﬂ o n

nz
The normal directional-hemispherical spectral specular reflectivity is
then



PREDICTIONS BY ELECTROMAGNETIC THEORY 109

LN =pih, B=p,=0)= (2T 2)’ (4-50)

n2+n,

For a wave entering the dielectric from air (n; =~ 1),

’ _ nz_l 2
pk, n(x) <n2+ 1)

4-51)

The foregoing reflectivities are spectral quantities because n, and
n; are functions of A.

45.2 Incidence on an Absorbing Medium

When the media have significant k values, the theoretical relations
are of the same form as the dielectric case except that the complex
dielectric constant n is retained. The angles 8 and x are related by
equation (4-36), and the relations between reflected and incident wave
amplitudes given by equations (4—41) and (4-42) can be used for the
wave interaction at the interface between two metals or between an
absorbing dielectric and a metal.

For a ray incident normal to the interface, equations (4—41) and (4-42)
yield, in an analogous fashion to equation (4-50),

(n2_iK2)_(nl_iKl)]2 (4_52)

(nz - iK2)+ (nx—iKl)

pha=|

This is a complex quantity and can be interpreted as giving both the
magnitude and phase change of the reflected wave. The ratio of the
magnitude of the reflected energy to that of the incident energy is ob-
tained by multiplying by the complex conjugate of equation (4-52) to
give

(n2 — n1)2+ (K2 - K1)2
(ﬂz + n1)2+ (K2+ K1)2

Pr, n(N) = (4-53)

For an incident ray in air (n,=1, , = 0) striking an absorbing mate-
rial (n2, k2), equation (4-53) reduces to

(nz—l)z'*"(%

pha(M) = (ne+1)2+ 42

(4-54)

When the material is transparent (x, = 0), equation (4-54) reduces to
equation (4-51). .

For oblique incidence the directional-hemispherical reflectivity can
be obtained from equations (4-41) and (4-42). For an incident ray po-
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larized parallel to the plane at incidence, equation (4—41) gives the
complex ratio

cos B (m - iKl)

Eyjl,r_ €08 X \na—IiKz

Ewmj, i cos B+ (nl—im>

cos X \nx—ikz

(4-55)

The reflectivity is obtained as the square of the ratio of the reflected
magnitude tc the incident magnitude, which is found by multiplying
equation (4-55) by its complex conjugate. This yields

L B) = (ny cos 8—ny cos x)*+ (k2 cos B— K1 cos x)?
ph(A. B (ns cos B+ n; cos x)*+ (k2 cos B+ Ky cos x)?2

(4-56)

Similarly for the polarized component perpendicular to the incident
plane

LN B) = (n2 cos x—ny cos B)2+ (k2 COS X — K1 COS B)z
PrLiA, (ns2 cos x+n, cos B)*+ (k2 cos x+ K; cos B)?

(4-57)

As before, if the incident beam has no specific polarization, the reflec-
tivity is an average of the parallel and perpendicular components as in
equation (4—48).

To this point in this chapter, the. wave nature of radiation has been
shown from a consideration of Maxwell’s equations. Then the interaction
of these waves with nonabsorbing and absorbing media has been dis-
cussed in terms of the refractive index n and the complex refractive index
7. Now the results will be applied more specifically to a discussion of
some actual radiative properties.

4.6 APPLICATION OF ELECTROMAGNETIC THEORY RELATIONS TO RADIA-
TIVE PROPERTY PREDICTIONS

The electromagnetic theory as applied here to radiative property
prediction has a number of drawbacks that limit its usefulness for prac-
tical calculations. Aside from the many assumptions used in the deriva-
tions, the theory itself becomes invalid when the frequencies being
considered become of the order of molecular vibrational frequencies.
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These qualifications restrict the equations used here to wavelengths
longer than in the visible spectrum.

The theory completely neglects the effects of surface conditions on
the radiative properties. This is its most serious limitation, since per-
fectly clean optically smooth interfaces are rarely encountered in prac-
tice. The greatest usefulness of the theory is probably in providing a
means for intelligent extrapolation when only limited experimental data
are available. In the following sections, the equations of electromagnetic
theory that are useful for the prediction of properties will be examined
and the assumptions inherent in their derivation discussed.

4.6.1 Radiative Properties of Dielectric (k — 0)

The equations to be examined in this section all contain these assump-
tions: (1) The medium is isotropic; that is, its electrical and internal
optical properties are independent of direction. (2) The magnetic per-
meability of the medium is equal to that of a vacuum. (3) There is no
accumulation of static electrical charge. (4) No externally produced
electrical conduction currents are present.

The measured index of refraction of the medium is, in general, a
function of wavelength, and thus any calculated radiative properties
will be wavelength dependent. If, however, the refractive index is
calculated from the permittivity y or the dielectric constant K (where
K=1v/v,), which are not generally given as functions of wavelength,
the spectral dependency is lost. Because of these considerations, no
notation is used in the following equations to signify spectral depend-
ence, but the reader should be aware that such dependence can be
included if the optical or electromagnetic properties are known as a
function of wavelength.

The surfaces are further assumed to be “optically smooth,” that is,
smooth in comparison with the wavelength of the incident radiation so
that specular reflections result.

4.6.1.1 Reflectivity.—Under the aforementioned restrictions, the di-
rectional-hemispherical specular reflectivity of a wave incident on a
surface at angle B and polarized parallel to the plane of incidence may
be obtained from equations (4-47) and (4-45) as

tan (8 —x)1?
G = (4-58)

Similarly, from equations (4~47) and (4-46), for a wave polarized per-
pendicular to the incidence plane
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s ooy [sin (B—XT ¢
pi(B)= [sin 8 +x)] (4-59)

where x is the angle of refraction in the medium on which the ray
impinges. For a given incident angle 8, the angle x can be determined
from equation (4—43) as

= NG (4-60)

where vy is the permittivity, K is the dielectric constant, and n is the
refractive index; the n, y, and K are assumed not to have any angular
dependence.

The reflectivity for unpolarized radiation was shown in equation
(4-48) (Fresnel’s equation) to be given by

_1sin® (B—x) [1 | cos (B+x)] ol

p'(B) " 2sin? (B+X) cos? (B—x)

EXAMPLE 4-1: An unpolarized beam of radiation is incident at angle
B=30° from the normal on a dielectric surface (medium 2) in air (me-
dium 1). The surface is of a material where k> =~ 0 and whose index of
refraction is n,=3.0. Find the directional-hemispherical reflectivity
for the polarized components and the unpolarized beam.

Because the incident beam is in air, n;—iki =1, and from equa-
tion (4-60), ni/n.=1/3.0=sin x/sin 30° therefore, x=9.6°. The re-
flectivity for the parallel component is, from equation (4-58),

pli(B=30°) = {[tan (20.4°)]/[tan (39.6°)1}>=0.202
and that for the perpendicular component is, from equation (4-59),
pL(B=30°) ={[sin (20.4°)]/[sin (39.6°)]}*=0.301

The reflectivity for the unpolarized beam obtained from equation (4-61)
or, more simply here, from the average of the components is

p’' (8=30°) = (0.202+0.301)/2=0.252

By performing the type of calculation shown in example 4—1 for various
incidence angles and ratios of the indices of refraction, the reflectivity
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can be tabulated or presented graphically. This is a directional-hemi-
spherical reflectivity in that it provides all the reflected energy resulting
from an incident beam from one direction. It is a spectral quantity in
the sense that the indices of refraction can correspond to a particular
wavelength if the details of the wavelength dependency are available.
Finally, it is a specular quantity in that it obeys the constraints of equa-
tion (4-35).

4612 Emissivity. — After the reflectivity has been evaluated, the
directional spectral emissivity can be found from equation (3-37) as

€(B)=1—-p'(B)

where the body is opaque.

Angle of emission, B, deg

0 10 Normal

indexes,
[fgl 1|

0 2 .4 6 ' 8 1.0
Directional emissivity, €'(B)

FIGURE 4-5. — Directional emissivity as predicted from electromagnetic theory.
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A graph of the directional emissivity is shown in figure 4-5 for various
ratios of |7iz|/|m|, which is a more general ratio than ny/r, as it includes
the cases where x; and K are not zero. For an incident beam in air
({m| = 1), the ratio reduces to the absolute magnitude of the complex
refractive index for the material on which the beam is incident. For
an insulating material where x < n, as is being discussed in this section,
figure 4-5 can be regarded as giving the emissivity of a dielectric into
air when the value for the parameter |7:|/|71] is set equal to the simple
refractive index n of the dielectric material. In the following discussion,
figure 45 will be interpreted in this sense.

For n=1, the emissivity becomes unity (blackbody case), and the
curve for this value on figure 4-5 is circular with a radius of unity. Asn
increases, the curves remain circular up to about 8= 70° and then begin
to decrease rapidly to a zero value at B=90°. Thus, dielectric materials
emit poorly at large angles from the normal direction. For angles of
less than 70°, the emissivities are quite high so that, in a hemispherical
sense, dielectrics are good emitters. It should be emphasized again that
the assumptions used for the present interpretation of Maxwell’s equa-
tions restrict these findings to wavelengths longer than the visible
spectrum, as borne out by comparisons with experimental measurements.

From the directional spectral emissivity, the hemispherical spectral
emissivity can be computed from equation (3-5) to be

ex(N, T4) =% f ex(\, B, 0, T4) cos Bdw

(a]

Then an integration can be performed over all wavelengths to obtain
the hemispherical total emissivity as given by equation (3-6a). Since the
optical properties are generally not known in sufficient detail so that a
wavelength integration of theoretical ex can be made, in the theory
spectral €, values are used for total € values for lack of anything better.

The integration of € (B) to evaluate € is complicated by the implicit
relation between x and B, and, hence, the integration is performed
numerically. The normal emissivity provides a convenient value to
which the hemispherical value may be referenced. The normal emis-
sivity can be computed from equation (4-51) as

, Ilz—l 2
e,,=1—(n2 - 1) (4-62)

for emission from a dielectric (medium 2) into air. The €, is shown as
a function of n in figure 4-6(a). Note that normal emissivities less than
about 0.50 correspond to n > 6. Such large n values are not common
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(a) Normal emissivity as function of refractive index.
(b) Relation between normal and hemispherical emissivity.

FIGURE 4-6. —Predicted emissivities of dielectric materials .

for dielectrics, so that the curve is not extended to smaller €. The ratio
of hemispherical to normal emissivity for dielectrics is provided as a
function of normal emissivity in figure 4-6(b).

EXAMPLE 4-2: A dielectric has a refractive index of 1.41. What is its
hemispherical emissivity into air at the wavelength where the refractive
index was measured?

From equation (4-62) the normal emissivity is

€=1-(0.41/2.41)2=0.97
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From figure 4-6(b), €/e,=0.94 and the hemispherical emissivity is
€=0.97 X0.94=0.91.

For a large n the €, values are relatively low, and with increasing n
the curves shown in figure 4-5 depart more and more from the circular
form of the curve corresponding to n= 1. Figure 4-6(b) reveals that the
flattening of the curves of figure 4-5 in the region near the normal causes
the hemispherical emissivity to exceed the normal value at large n.
For n near unity (€, near 1), the hemispherical value is lower than the
normal value because of the poor emission at large B as shown in fig-
ure 4-5.

46.2 Radiative Properties of the Metals

The properties of metals were shown to be given by relations of the
same form as for insulating materials. For electrical conductors, how-
ever, the extinction factor k cannot be neglected with respect to the
refractive index n. As will be shown, there are certain simplifying
assumptions that lead to more useful equations than the general results
from the theory. The main difficulty in application of the theoretical
results is that the optical properties for use in these equations are
difficult to obtain: when measured values are available, they are often
inaccurate because of the experimental problems involved in their
measurement.

4.6.2.1 Reflectivity and emissivity relations using optical constants.—
For most metals, the simple index of refraction n and the extinction
coefficient x are quite large at wavelengths longer than those in the
visible region. Because of this fact, the angle of refraction x is quite
small and cos x will be close to unity for incidence from a dielectric
having n near unity. This is shown as follows:

For a metal, the absolute magnitude of the complex refractive index
ratio relating x and 8 can be obtained by multiplying by the complex
conjugate of equation (4-36). This gives, for |n:| =1 (incidence through
dielectric or air (medium 1) onto a metal (medium 2)),

_ . ——— sin
|nz|———|n2—u<z|=\/n§+x§=sini (4-63a)

The maximum value of sin 8 is unity; hence, for a given n; and k: the
maximum value of sin X is

1
sin Yy = —— 4—63b
sin X= 7 (4-63b)
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For the large n. and «; typical of metals (this will be demonstrated
later by table 4—II), x will have a small value. If VnZ+«2 has a value
greater than about 3.3, x will be less than 18°. However, cos 18° is about
0.95. Thus, if Vn}+«}> 3.3, cos x can be set equal to unity with an er-
ror of less than 5 percent.

This fact allows us as a good approximation to set cos x in equations
(4—41) and (442) equal to unity; these equations then reduce to, for
incidence through a dielectric,

B2
Ccos p——
EMH,r: np

: (4—-64a)
Ew. cos,3+?
n2
and
L
Eu ,r  cosB T
Euy s i m (4-64b)
cos B 7,

where n, is close to unity.

Equations (4-56) and (4-57) give the general reflectivity relations. For
the incident beam from a transparent or dielectric medium, the re-
flectivity components for the metal (cos x=1) become

(o) +
2 cos 3 :

pil(8) =L (4-65)
! 2
(nz +COSB) +K2
and
- 24,2
pi(p) =Ta—m co8 Bt i (+-66)

(nz2+n, cos B)2+«3

These expressions are the squares of the real parts of equations (4-64).

For a beam incident through air on a metal with complex refractive
index n;—ik., these equations reduce to (since the refractive index for
air is ny=1 as a very good approximation)

(n2 cos B—1)2+ (k2 cos B)2
(nz cos B+1)2+ (k2 cos B)?

pii(B) = 467

and
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(na—cos B)%+ k3

pl(ﬁ)z(nz-%-cos B)2+ K3 (4-68)
For an unpolarized beam,
! + !
o' (B) _pi(B) : Pii(B) (4-69)

The corresponding emissivity values are found from €' (8) =1— p' (B),
and these simplify to

, _ 4n; cos B
€\ (B) = (n2+ «k3) cos? B+2n, cos B+1 (4-70)
, _ 4n; cos 8
€(8) cos? B+2n; cos B+ n3+ k3 @-71)
For an unpolarized beam,
, € (B)+ €
¢ (B) = LB)2 1(8) (4-72)

The use of these emissivity relations is demonstrated in figure 47
for a pure smooth platinum surface at a wavelength of 2 um, and it is
evident by comparison with the experimental data that, although the
general shape of the curve predicted by equation (4-72) is correct, the
magnitude is in error. The data for n and « for platinum, taken from
the Handbook of Chemistry and Physics, 44th Edition (ref. 2), are
n=5.7 and k=9.7.2 A comment as to the difficulty of the measurement
of the optical properties of metals, perhaps because of the large influence
of metal purity and the ease of contamination, is that the 35th edition
of the Handbook lists values for platinum from an older measurement
for identical conditions as n=0.70 and k=3.5. The newer measure-
ments thus differ by a factor of 8 in refractive index and 2.8 in the
extinction factor.

Although the inaccuracy of the optical constants presents a difficulty
in the precise evaluation of radiative property values, the theory does
provide an understanding of the directional behavior of the properties.

12 The reader should be aware that the complex refractive index can be defined in other ways than 7= n — ik as used
here. It is also commonly given as n=n—inx and occasionally with a positive sign in front of the extinction factor.
When consulting data references, care should be taken in determining what definition is used so that conversion to the
system used in this report can be carried out if necessary.
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FIGURE 4-7. —Directional spectral emissivity of platinum at wavelength A =2 pm.

For metals, as illustrated by the results for platinum in figure 4-7,
the emissivity is essentially constant for about 40° away from the normal
and then it increases to a maximum located within a few degrees of the
tangent to the surface. This angular dependence for emission from
metals is in contrast to the behavior for dielectrics for which the emis-
sion decreases substantially as the angle from the normal becomes larger
than about 60°.

In table 4~II, the prediction of normal spectral emissivity by using
equation (4-72) with 8=0 is compared with measured values. All data
are taken from reference 2. A wavelength of A=0.589 um is used for
some of the comparisons because of the wealth of data available. This
is because of the ease with which a sodium vapor lamp, which emits at
this wavelength, can be employed as an intense monochromatic energy
source in the laboratory. Since this wavelength is in the visible range,
it is in the borderline short wavelength region where the electromagnetic
theory becomes inaccurate.

Comparison of the values in the table 4-II shows the agreement be-
tween predicted and measured €; » to be good, for example, for nickel
and tungsten, but a factor of 4 in error for magnesium. For the cases
of poor agreement, it is difficult to ascribe the error specifically to the
optical constants, the measured emissivity, or the theory itself. Any or
all could contribute to the discrepancy. Most probably the optical con-
stants are somewhat in error, and the experimental samples do not
meet the standards of perfection in surface preparation demanded by
the theory.
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TABLE 4-1I.— COMPARISON OF SPECTRAL NORMAL EMISSIVITY PREDICTIONS FROM
ELECTROMAGNETIC THEORY WITH EXPERIMENT

[Data from ref. 2]

- >> — 1
Spectral normal
emissivity, €, ,(X\)
Metal Wavelength,| Refractive | Extinction
A, um index,n | coefficient, x

Experi- Calculated

mental from equa-

tion (4-72)
Copper.........oou.ne. 0.650 0.44 3.26 0.20 0.140
2.25 1.03 11.7 041 .029
4.00 1.87 21.3 027 .014
Gold.......cooooinns 0.589 0.47 2.83 0.176 0.184
2.00 A7 12.5 .032 .012
Iron.....cooooeiiins 0.589 1.51 1.63 0.43 0.674
Magnesium.......... 0.589 0.37 4.42 0.27 0.070
Nickel.....ccooiviiins 0.589 1.79 3.33 0.355 0.381
2.25 3.95 9.20 152 145
Silver..........coouvee 0.589 0.18 3.64 0.074 0.049
2.25 77 15.4 .021 .013
4.50 4.49 33.3 .015 014
Tungsten............. 0.589 3.46 3.25 0.49 0.455

The hemispherical emissivity for a metal (having complex refractive
index n—ik) in air or vacuum is found by substituting equation (4-72)
into equation (3-5). After carrying out the integration, this yields

2 2 2__,.2 .
e=4n—4n? log, (1+2n+n +K)+4n(n K)tan“ ( K )
K

n?+ k? n+n?+ k?
N dn 4n?
n24+k* (n?+«?)?

loge (1+2n+ n*+ k%)

_4n(—n®) K (4-T3)
k(n*+ k?)? R

Evaluation of equation (4-73) is difficult because it involves small dif-
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ferences of large numbers, and many significant figures must be car-
ried in the calculations.

From equation (4—72), the normal emissivity from a metal into air can
be computed by letting 8=0, and this is shown in figure 4-8(a) as a
function of n and k. Note that, because the velocity of the waves in the
medium must be less than c,, the curve for k=0 cannot extend below
n=1.

It is of interest to compare the hemispherical emissivity with the
normal value. The practical use for this comparison arises from the
fact that it is often the normal emissivity that is measured experimentally
because of the relative simplicity of placing a radiation detector in this
one orientation. With regard to the total amount of heat dissipation,
however, it is the hemispherical emissivity that is desired.

Figure 4-8(b) shows the ratio of hemispherical to normal emissivity
as a function of the normal value. Equation (4-73) divided by e, has
been plotted for the case where k= n. This is valid at large wavelengths
for many metals as shown in the next section. The curve is seen to be
close to that presented by Jakob (ref. 3) for metals as derived from
approximate equations and to lie somewhat below the curve for insula-
tors (as taken from fig. 4-6(b)) at high normal emissivities.

For polished metals when €, is less than about 0.5, the hemispherical
emissivity is larger than the normal value because of the increase in
emissivity in the direction near tangency to the surface as was pointed
out in figure 4-7. Hence, in a table listing emissivity values for polished
metals, if the €, is given, it should be multiplied by a factor larger than
unity such as obtained from figure 4-8(b) to estimate the hemispherical
value. Real surfaces that have roughness or may be slightly oxidized
often tend to have a directional emissivity that is more diffuse than for
polished specimens. For a practical case, therefore, the emissivity ratio
may be closer to unity than indicated by figure 4-8(b).

4622 Relation between emissive and electrical properties.—The
wave solutions to Maxwell’s equations provide a means for determining
n and « from the electric and magnetic properties of a material. The
relations for n and k are given by equations (4-23). For metals where
r. is small, and for relatively long wavelengths, say Ao > ~5 um, the
term Ao/ (27c,rey) becomes dominating, and equations (4—23) then reduce
to (the magnetic permeability is taken equal to wo)

e o [ AobioCo _ [30%0 (4-74)
d7rre Te

for all quantities in mks units. If A, is taken in microns and re has the
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units of ohm-centimeters (rather than ohm-meters), equation (4-74)

becomes
0.003A,
n=kKk= Y (4~75)
e

This is known as the Hagen-Rubens equation (ref. 4). Predictions of
n and x from this equation can be greatly in error, as shown in table
4-1I1. Nevertheless, some useful results will eventually be obtained.
With the simplification that n= «, an equation such as equation (4-54)
reduces to the following expression for a material with refractive index
n radiating in the normal direction into air or vacuum:
E},‘."()\)zl_<2n3——2n+ 1)

20t on+ 1 (4=76a)

TABLE 4-III. — COMPARISON OF MEASURED OPTICAL CONSTANTS WITH ELECTROMAGNETIC
THEORY PREDICTIONS

Measured values Spectral normal
n=x emissivity, €x ,(\)
calcu-

Wave- lated

Metal length, | Electrical from Calcu-
Ao, m | resistivity Extinction| equa- lated

(at 20° C), | Refractive{ coefh- tion Measured from

Te, index, n | cient, x | (4-75) equa-

(ohm) (cm) tion
®) 4-77)

Aluminum.| 12 2.82x10-%f 336 " 76.4 113 20.02 0.018
Copper..... 4.20 [ 1.72x10-8 b1.92 b22.8 86 200027 | ...
4.20 |1.72 »1.92 »22.8 86 4015 0.023

5.50 {1.72 23.16 1284 98 012 .020

Gold........ 5.00 |2.44x10-8 21.81 2328 78 2¢0.031 0.026
Platinum..| 5.00 10x10-%f 2115 415.7 39 40.050 0.051
Silver....... 4.50 | 1.63x10-¢ a4.49 2333 91 2¢0.015 0.022
4.37 | 1.63 b4.34 b32.6 90 &¢015 022

* Data from ref. 2.

® Data from ref. 14.
© Measured at 4 um.
¢ Data from ref. 15.
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Although there is no difficulty in evaluating equation (4-76a), a further
simplification is often made by expanding in a series to give

2.2 1,1 1 ) 4-76b)

,"A — — = Bl =
€ alh) =1 (1 n+n2 n3+2n5 2n‘*+

Because the index of refraction of metals as predicted from equation
(4-75) is generally large at the long wavelengths being considered
here, A\, > ~ 5 um (see table 4111, colunn 6), only the first two terms
of the series often are retained, and the normal spectral emissivity is
then given by substituting equation (4-75) to obtain the Hagen-Rubens
emissivity relation

2 2
G =1-p 0 =1-(1-2) == @
* Pr. n/  [0.003), 470
Te

Data for polished nickel are shown in figure 4-9, and the extrapola-
tion to long wavelengths by equation (4—77) appears reasonable. The
predictions of normal spectral emissivity at long wavelengths as pre-
sented in table 4-1II are much better than the prediction of attendant
optical constants.

3
2~
Temperature,
°R°K)
\\‘ ,~2290 (1272)
I— ~~
r 7/
& £2160 (1200732000 (11D
5 ~— 50294 N\,
] [~ ~
2 (Y
£ o ™~ N
w 5 Source
.03 ~530 (294)
—JRet. 15 -
02— —-— Ref. 19] Asgiven .
_____ Ref. 20/ in ref. 15 ~
—-— g @-TD
01 T B e L
-0hy 2 3 4 5678910 0 %

Wavelength, A, ym

FIGURE 4-9.— Comparison of measured values with theoretical predictions for spectral
normal emissivity of polished nickel.
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The normal spectral emissivity given in equation (4-77) can be in-
tegrated with respect to wavelength to yield a normal total emissivity.
The integration relating spectral and total quantities is given by equation
(3-3b) (modified for a normal emissivity so that 8=0):

7 [ €00 Dt Dn
en(T) =— 7

Equation (4-77) is only valid for A, > ~ 5 um, so that in performing the
integration starting from A==0, the condition is being imposed that the
metal temperature is such that the energy radiated from A,=0 to 5 um
is small compared with that at wavelengths longer than 5 um. Then
substituting equation (4-77) and equation (2—11a) for i, into the integral
provides

x Te 1/2 2Cl
"fo 2(0-003Aa) N(emr—1) o
oT?

&(T) =

_ AnC(Tr) (= g5
= 00037 C3s J, et—1%

(4-78)

where {=C,/\,T as was used in conjunction with equation (2-19). The
integration is carried out by use of I" functions to yield

47C (Tre)'2

For pure metals, r, is approximately described near room temperature by

T
Te =Te, 492 (@) (4-80)

where 7., 492 is the electrical resistivity, still in ohm-centimeters, eval-
uated at 492° R (0° C). Substituting equation (4—80) into equation (4—79)
gives the result

47TC1(12.27) Te,492T

€(T) = (0.003)2gC4 Y 492

(4—-8la)

or simply
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FIGURE 4-10. —Temperature dependence of total normal emissivity of polished metals.

€,(T) =0.0193 Vre, a0 T (4-81b)

where T is in °R. This indicates that, for long wavelengths (A, > ~ 5 um),
the total emissivity of pure metals should be directly proportional to
temperature. This result was originally derived by Aschkinass (ref. 5)
in 1905. In some cases it holds to unexpectedly high temperatures where
considerable radiation is in the short wavelength region (for platinum,
to near 3200° R), but, in general, applies only below about 1000° R.
This is illustrated in figure 4-10 for platinum and tungsten (data from
ref. 2).

In figure 4-11, a comparison is made at 100° C of the total normal
emissivity from experiment and from equation 4-81b) for a variety of
polished surfaces of pure metals. Agreement is generally satisfactory.
The experimental values are the minimum values of results available
in three standard compilations (refs. 2, 6, and 7).

By using the emissivity from equation (4-81), the total intensity in
the normal direction emitted by a metal is given by

(L) w

. _
n, metals — €n, metals -
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FIGURE 4-11.—Comparison of data with calculated total normal emissivity for polished
metals at 100° C.

This indicates that the normal total intensity is proportional to the fifth
power of absolute temperature rather than the fourth power as with a
blackbody. Again it must be emphasized that many assumptions were
made to obtain this simplified result. If for example more than two
terms had been retained from the series in equation (4-76b), it would
be found that the exact proportionality between normal total intensity
and 7% no longer holds, although the exponent would still be greater
than 4.

The results of a more detailed computation are given in reference 3,
and these include an integration over all directions to provide hemispheri-
cal quantities. The following approximate equations for the hemispherical
total emissive power fit the results in two ranges:

e(T)=0T*(0.751Vr.,T—0.39%r.T); 0<r.T<0.2 (4-83a)
and
e(T) =0oT4(0.698Vr,T—0.266r.T); 0.2<rT<0.5 (4-83b)

where the numerical factors in the parentheses and those used in speci-
fying the ranges of validity apply for T in °K and r. in ohm-centimeters.
The resistivity r. depends on T to the first power so that the first term
inside the parentheses of each of these equations provides the 7%
dependency discussed earlier.
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4.6.3

THERMAL RADIATION HEAT TRANSFER

Summary of Prediction Equations

A summary of equations for property predictions by use of electro-
magnetic theory is given in table 4-1V.

EXAMPLE 4-3: A polished platinum surface is maintained at tem-
perature T4=400° R. Energy is incident upon the surface from a black
enclosure at temperature T;=800° R that encloses the surface. What
is the hemispherical-directional total reflectivity into the direction

normal to the surface?

Equation (3-48) shows that the directional-hemispherical total re-
flectivity can be found from

pn(T4=1400°R) =1 — (T4 =400° R)

TaBLE 4-IV.— SUMMARY OF EQUATIONS FOR PROPERTY PREDICTION BY ELECTROMAG-

NETIC THEORY

Property

Equation

Conditions

Dielectrics (x=10)

Directional reflectivity...........
Directional reflectivity...........
Directional reflectivity...........

Normal reflectivity................
Hemispherical emissivity........

(4-58), (4-60)
(4-59), (4-60)
(4-61), (4-60)

(4-50)
®)

Polarized in plane parallel to
plane of incidence.

Polarized in plane perpendicu-
lar to plane of incidence.

Unpolarized.

Polarized or unpolarized.

Emission into medium having
n=1.

Metals (in contact with

transparent medium of unity refractive index)

Directional reflectivity...........
Directional reflectivity...........

Directional reflectivity...........
Directional emissivity............
Hemispherical emissivity........
Normal spectral emis-

sivity.
Normal total emissivity..........

@—67)
(4-68)

(4-69)

(4-12)

(4-13)
(4-76a), (4-77)

(4-81b)

Parallel polarized component.

Perpendicular polarized com-
ponent.

Unpolarized.

Unpolarized.

Unpolarized.

Polarized or unpolarized
A>~5um.

T <~ 100¢° R.

# See fig. 4-6.
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where an(T4y=400° R) is the normal total absorptivity of a surface at
400° R for incident black radiation at 800° R, that is,

f " &) (N, Ta=400°R)il, (A, 800° R) dA
a,(T4=400° R) ==°

f’“i;h(x, 800° R) d\
0

For spectral quantities a) ,(A, T4=400° R)=¢, ,\, T.=400° R).
From equation (4—77) the variation of r. with temperature provides the
emissivity variation €, n(A, T4) < TY2. Then €, ,(\, T4=400° R)=¢€]_,(\,
T,=2800° R) (400/800)*/2 and we obtain

\ﬁre;, (X, Ta=800° R)i}, (\, 800°R) dA
0

ay(T4=400°R) = -
f i, (X, 800° R) dn
0

_ &(T4=800°R)
V2

where the last equality is obtained by examination of the emissivity
definition, equation (3-36). The normal total emissivity of platinum
at 800° R is given by equation (4-81b) as plotted in figure 4-10 as

€ (T4=800°R) =0.0193 Vre, 492 X 800= 0.051

Note that equation (4-81b) is only to be used when temperatures are such
that most of the energy involved is at wavelengths greater than 5 um.
Examination of the blackbody functions, table V of the appendix, shows
that for a temperature of 800° R, about 10 percent of the energy is at
less than 5 um so that possibly a small error is introduced.

The reciprocity relation of equation (3-28) for uniform incident
intensity can now be employed to give the final result for the hemi-
spherical-directional total reflectivity,

pn(T4=400°R) =1—a,(T4=400°R) ~ (T4+=800°R)
0.051
=1-"22=0.964
V2

.\/_
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4.7 EXTENSIONS OF THE THEORY OF RADIATIVE PROPERTIES

Much work has been expended in improving the theory of the radiative
properties of materials, using both classical wave theory and quantum
theory. A number of authors have successfully removed some restric-
tions which are present in the classical development presented here.
Notable are the contributions of Davisson and Weeks (ref. 8), Foote
(ref. 9), Schmidt and Eckert (ref. 10), and Parker and Abbott (ref. 11),
who all extended the emissivity relations for metals to shorter wave-
lengths and higher temperatures, and of Mott and Zener (ref. 12), who
derived relations for metal emissivity at very short wavelengths on the
basis of quantum relations.

None of these treatments, however, accounts for surface effects.
Because of the difficulty of specifying surface conditions and con-
trolling surface preparation, it is found that comparison of the theory
with experiment is not always adequate for even the refined theories.
In fact, comparison to the less exact but simpler relations given here
is often better. For even the purest materials given the most meticulous
preparation, the elementary relations are often more accurate because
the errors in the simpler theory are in the direction which cause com-
pensation for surface working.

Polarization effects entered into the mathematical description of
electromagnetic waves and wave reflections. A detailed discussion of
these effects is beyond the intent of this publication. A comprehensive
discussion of the analytical methods and technology of polarization
phenomena is given in reference 13.
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Chapter 5. Radiative Properties of Real Materials
51 INTRODUCTION

In this chapter, the general characteristics of the radiative properties
of real materials will be examined. These properties can vary consider-
ably from the idealized cases presented in chapter 4 for “optically
smooth” materials as predicted by electromagnetic theory. The analyti-
cal predictions yield useful trends and provide a unifying basis to
help explain various radiation phenomena. However, the analyses are
inadequate in the sense that the engineer is generally dealing with sur-
faces coated in varying degrees with contaminants, oxide, paint, etc.,
and having a surface roughness that is difficult to specify completely.
Examples of some typical variations of radiative properties as a function
of these and other parameters will be presented in this chapter to
illustrate the types of property variations that can occur. This will
provide the reader with an appreciation of how sensitive the radiative
performance is to the surface condition. In addition to the typical prop-
erties presented, a number of atypical examples will be given in order
to demonstrate that a careful examination of individual properties must
be made to properly select the property values to be used in radiative
exchange calculations.

The discussion in this chapter will be limited to opaque solids, where
opaque is defined to mean that no transmission of radiant energy occurs
through the entire thickness of the body. A composite body such as
a thin coating on a substrate of a different material can have partial
transmission through the coating, but it is assumed for the present dis-
cussion that none of the transmitted radiation will pass entirely through
the substrate. No attempt to compile comprehensive property data will
be made. Extensive but by no means complete tabulations and graphs
of radiative properties have been gathered in references 1 to 6.

As discussed in chapter 4, there are basic differences in the radia-
tive behavior of metals and dielectrics that are evident from electro-
magnetic theory. For this reason the first two sections in this chapter
will deal with these two classes of materials, with metals being dis-
cussed first. Then some special surfaces will be discussed that have
specific desirable variations of properties with wavelength and direction.

5.2 SYMBOLS

A area
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speed of electromagnetic radiation in vacuum
emissive power

fraction of blackhody energy in spectral range 0 — A
probability function

energy rate, energy per unit time

energy flux, energy per unit time per unit area
electrical resistivity

absolute temperature

height of surface roughness

absorptivity

angle measured from normal of surface

electrical permittivity

emissivity

circumferential angle

wavelength

magnetic permeability

reflectivity

Stefan-Boltzmann constant (table IV of the appendix)
root-mean-square height of surface roughness

Subscripts:
of surface 4
a absorber
b blackbody condition
c evaluated at cutoff wavelength
e emitted
eq at equilibrium
) incident
max maximum value
n normal direction
R radiator
r reflected
s specular
A spectrally dependent
0—A in wavelength range 0—A
Superscripts:
' directional
" bidirectional

5.3 RADIATIVE PROPERTIES OF METALS

Pure, smooth metals are often characterized by low values of emis-
sivity and absorptivity, and therefore comparatively high values of re-
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flectivity. Figure 4-11 of the preceding chapter demonstrates that the
emissivity in the direction normal to the surface is quite low for a
variety of polished metals. However, low emissivity values are not an
absolute rule for metals; in some of the examples that will be given, the
spectral emissivity rises to 0.5 or larger as the wavelength becomes
short, or the total emissivity becomes large as the temperature is
elevated.

5.3.1 Directioneal Variations

A behavior typical of polished metals is that the directional emis-
sivity tends to increase with increasing angle of emission B (where B
is the angle measured with respect to the surface normal). This is pre-
dicted by electromagnetic theory and was shown to be true for platinum
in figure 4-7. At wavelengths shorter than the range for which the
simple electromagnetic theory of chapter 4 applies, a deviation from
this behavior might be expected. To illustrate this deviation, the direc-
tional spectral emissivity of polished titanium is shown in figure 5-1.

Angle of emission, B, deg

15
Wavelength,

um

90
0 2 4 6 .8

Directional spectral emissivity, €}, B)

FIGURE 5-1.—Effect of wavelength on directional spectral emissivity of pure titanium.
Surface ground to 16 win. (0.4 um) rms. (Data from ref. 6.)
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At wavelengths greater than about 1 wm, the directional spectral emis-
sivity of titanium does indeed tend to increase with increasing 8 over
most of the B range. The increase with 8 becomes smaller as wavelength
decreases; finally, at wavelengths less than about 1 um, the directional
spectral emissivity actually decreases with increasing B8 over the entire
range of B. Hence, for polished metals, the typical behavior of increased
emission for directions nearly tangent to the surface can be violated at
short wavelengths.

53.2 Effect of Wavelength

In the infrared region, it was shown in chapter 4 that the spectral
emissivity of metals tends to increase with decreasing wavelength. This
trend remains true over a large span of wavelength as illustrated for
several metals in figure 5-2 which gives the spectral emissivity in the
normal direction. For other directions, the same effect is illustrated
in figure 5-1 except at large angles from the normal where curves for
various wavelengths may cross. The curve for copper in figure 52 pro-
vides an exception as the emissivity remains relatively constant with
wavelength.

At very short wavelengths, the assumptions upon which the sim-
plified electromagnetic theory of chapter 4 are based become invalid.

g Metal  Temperature,
R (°K)
A ~ Molybdenum 2000 (1111)

Iron 2370 (1317

Platinum 2190 (1217)
L Nickel 2160 (1200}

8

Normal spectral emissivity, "k. LY

8
LI |
iy
g
N]
w
8
l

.02 l 1 l 1 l
1 2 4 6
Wavelength, A, ym

s

FIGURE 5-2. — Variation with wavelength of normal spectral emissivity for polished metals.
(Data from Seban (ref. 15).)
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Indeed, most metals exhibit a peak emissivity somewhere near the visible
region, and the emissivity then decreases rapidly with further decrease
in wavelength. This is illustrated by the behavior of tungsten in figure
5-3.

5.3.3 Effect of Surface Temperature

The Hagen-Rubens relation (eq. (4-77)) showed that, for wavelengths
that are not too short (A > ~ 5 um), the spectral emissivity of a metal
is proportional to the resistivity of the metal to the one-half power.
Hence, we can expect the spectral emissivity of pure metals to increase
with temperature as does the resistivity, and this is found to be the
case in most instances. Figure 5-3 is an example for the hemispherical
spectral emissivity of tungsten. The expected trend is observed for
A>1.27 pum. Figure 5-3 also illustrates a phenomenon characteristic
of many metals as discussed in reference 7. At short wavelengths (in
the case of tungsten A < 1.27 um), the temperature effect is reversed
and the spectral emissivity decreases as temperature is increased.

The observed increase of spectral emissivity with decreasing wave-
length for metals in the infrared radiation region (wavelengths longer
than visible region) as discussed in section 5.3.2 accounts for the increase
in total emissivity with temperature. With increased temperature,
the peak of the blackbody radiation curve (fig. 2-6) moves toward
shorter wavelengths. Consequently, as the surface temperature is
increased, proportionately more radiation is emitted in the region of
higher spectral emissivity, which results in- an increased total emis-

ml

&
|

Temperature,
°K
(0] 1600
o — a 2200
A 2800

Hemispherical spectral emissivity, €\, Ty)
)
]

' T I | )
.6 .8 1 2 3
Wavelength, A, um

.=
~

w
Ry S

FIGURE 5-3.—Effect of wavelength and surface temperature on hemispherical spectral
emissivity of tungsten (ref. 16).
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(Magnesium oxide

Magnesium
Polished Inconel X~ [

Tungsten—,
~Polished gold
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Hemispherical total emissivity, €(Tp)
-3

FIGURE 5—4.— Effect of temperature on hemispherical total emissivity of several metals
and one dielectric. (Data from Gubareff et al. (ref. 1).)

sivity. Some examples are shown in figure 5-4. Here the behavior of
metals is contrasted with that of a dielectric, magnesium oxide, for
which the emissivity decreases with increasing temperatures.

The next two factors to be discussed are surface roughness and sur-
face impurities or coatings. These can cause major deviations from the
electromagnetic theory predictions of chapter 4.

5.3.4 Effect of Surface Roughness

If the surface imperfections present on a material are much smaller
than the wavelength of the radiation being considered, the material
is said to.be optically smooth. A material that is optically smooth for
long wavelengths may be comparatively quite rough at short wavelengths.
The radiative properties of optically smooth materials can be predicted
within the limitations of electromagnetic theory as discussed in
chapter 4.

For wavelengths that are very short in comparison with the degree
of roughness, the directional distribution of emitted or reflected energy
is governed chiefly by the roughness. If the orientation and constitution
of the roughness is specified, it is possible in certain cases to predict
analytically these directional distributions. Such a case for parallel
grooves will be noted in section 5.5.2.

Various attempts at predicting the effect of surface roughness on the
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radiative properties of metals have been made. All must be viewed as
preliminary probings of an extremely complex subject, and none are
satisfactory over the entire range of variables encountered for engineer-
ing surfaces.

A chief stumbling block is in the precise definition of surface charac-
teristics for use in an analysis. Perhaps the most common way of charac-
terizing surface roughness is by the method of preparation (lapping,
grinding, etching, etc.) plus a specification of root-mean-square (rms)
roughness. The latter is usually obtained by means of a profilometer,
which is an instrument that traverses a sharp stylus over the surface
and reads out the vertical perturbations of the stylus in terms of a
rms value. It does not account for the horizontal spacing of the roughness
and gives no indication of the distribution of the size of roughness
around the rms value. At present, there is no generally accepted method
of accurately specifying surface characteristics, and none of those
mentioned in this paragraph are adequate for prediction of radiative
properties.

A few of the analytical approaches taken in the face of the afore-
mentioned difficulty will now be mentioned. Davies (ref. 8) has ex-
amined the reflecting properties of a surface with roughness that is
assumed to be distributed according to a Gaussian (normal) probability
distribution, specified as a probability p(z) of having a roughness of
height z given by -

p(z) =—L — exp <__22_Z)
0'0\/27T 200

where o5 is the rms roughness. Using this distribution and the assump-
tions that the individual surface irregularities are of sufficiently small
slope that shadowing can be neglected, that the material is a perfect
electrical conductor, and that o, is very much smaller than the wave-
length of incident radiation A, Davies was able to derive relations that
predicted the distribution of reflected intensity. The reflected distribu-
tion was found to consist of a specular component and a component
distributed about the specular peak.

A similar derivation, with o, assumed much larger than A, again
yielded a distribution of reflected intensity about the specular peak, this
time of larger angular spread than for the case of o, < A. This would
be expected since the surface should behave increasingly like an ideal
specular reflector as the roughness becomes very small compared with
the wavelength of the incident radiation. Davies’ treatment is found
to be very inaccurate at near grazing angles because of the neglect of
shadowing.

Porteus (ref. 9) extended Davies’ approach by removing the restrictions



140 THERMAL RADIATION HEAT TRANSFER

on the relation between o, and A and including more parameters for
specification of the surface roughness characteristics. Some success in
predicting the roughness characteristics of prepared samples from
measured reflectivity data was obtained, but certain types of surface
roughness led to poor agreement. Measurements were mainly at normal
incidence, and the neglect of shadowing makes the results of doubtful
value at near grazing angles.

A more satisfactory treatment has been given by Beckmann and
Spizzichino (ref. 10). Their method includes the autocorrelation distance
of the roughness in the prescription of the surface. This is a measure
of the spacing of the characteristic roughness peaks on the surface. The
method gives somewhat better data correlation than the earlier analyses.

Some observed effects of surface roughness are shown in figures 5-5
and 5-6. The former shows the directional emissivity of titanium at a
wavelength of 2 wm for three surface roughnesses, the maximum rough-
ness being 16 microinches (uin.). Since 2 pum is equal to 78.7 pin., the

Angle of emission, B, deg

0
15

Surface finish rms,
gin, {(pm)

———— 16 (0.4) Ground
—{O— 4 (0.1) Honed
—O— 2 (0.05 Lapped

0 .2 4 .6 .8
Directional spectral emissivity, €)(\ = 2um, )

FIGURE 5-5.— Effect of surface finish on directional spectral emissivity of pure titanium.

Wavelength, 2 um (78.7 uin.). (Data from ref. 6.)
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FIGURE 5-6.—Effect of roughness on reflectivity in specular direction for ground nickel
specimens. Mechanical roughness for polished specimen, 0.015 pm. (Data from
ref. 17.)

wavelength of the radiation is significantly larger than the surface
roughnesses. Hence, relative to this wavelength the specimens are
smooth. As a result, the emissivity changes only a small amount as the
roughness varies from 2 to 16 pin.

Figure 5-6 provides the reflectivity of nickel for energy reflected into
the specular direction from a beam incident at an angle 10° from the
normal. In this figure, the reflectivities of the rough specimens are
expressed as a ratio to the reflectivity of a polished surface in order to
exhibit the effect of roughness. The polished surface used for com-
parison had a roughness about 10 times less than that of the rough
specimens. A high value of the ordinate thus means that the specimen
is behaving more like a polished surface. Data are shown for ground
nickel specimens with four different roughnesses. The reflectivity rises
as wavelength is increased because for a given roughness the surface
is more smooth relative to the incident radiation. As expected, for
a fixed wavelength the reflectivity for the specular direction decreased
as the roughness was increased.

5.3.5 Effect of Surface Impurities

Impurities in this context include contaminants of any type which
cause deviations of the surface properties from those of an optically
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FIGURE 5-7.— Effect of oxide layer on directional spectral emissivity of titanium. Emission
angle, 25° surface lapped to 2 uin. (0.05 um) rms; temperature, 530° R (294° K).
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FIGURE 5-8.—Effect of oxidation on normal spectral emissivity of Inconel X. (Data from

ref. 5.)

smooth pure metal. The most common contaminants are thin layers of
foreign materials deposited either by adsorption, such as in the case of
water vapor, or by chemical reaction. The common example of the
latter is the presence of a thin layer of an oxide on the metal. Because
dielectrics, as will be discussed in section 5.4, have generally high
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values of emissivity, an oxide or other nonmetallic contaminant layer
will usually increase the emissivity of an otherwise ideal metallic body.

Figure 5-7 shows the directional spectral emissivity of titanium at
an angle of 25° to the surface normal. The data points are for the unoxi-
dized metal, and the solid line is the ideal emissivity predicted from
electromagnetic theory. The dashed curve shown above the data points
is the observed emissivity when an oxide layer only 0.06 wm in thickness
is present. The emissivity is seen to be increased by a factor of almost 2
from that of the pure material over much of the wavelength range.
Figure 5-8 shows a similar large increase in the normal spectral emis-
sivity of Inconel X for an oxidized surface as compared with that for the
polished metal.

Figures 5-9 and 5-10 illustrate the effect of an oxide coating on the
hemispherical total emissivity of copper and the normal total emissivity
of stainless steel. The details of the oxide coatings are not specified,
but the large effect of surface oxidation is apparent. A more precise
indication of oxide coating effect is shown in figure 5-11 where the
hemispherical total emissivity of aluminum is given. An oxide thickness
of a few ten-thousandths of an inch provides a very substantial emissivity
increase.

1.0 r
Black oxide
- WL \
— \
w
= Heavily oxidized
=
é 6 Lightly oxidized
[+
=
B
8 A
s
a
‘€
£ 2
Polished (pu re/
| ] l | J
0 20 400 600 800 1000

Temperature, Ty, °F

L | | | L |
300 400 500 600 700 800
Temperature, Ty, °K

FIGURE 5-9. — Effect of oxide coating on hemispherical total emissivity of copper. (Data from
Gubareff et al. (ref. 1).)
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FIGURE 5-10. —Effect of surface condition and oxidation on normal total emissivity of
stainless steel type 18-8. (Data from ref. 5.)
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FIGURE 5-11.— Typical curve illustrating effect of electrolytically produced oxide thickness
on hemispherical total emissivity of aluminum. Temperature, 100° F. (Data from Gubareff
et al. (ref. 1).) )

Figure 5-12 shows approximately the directional total absorptivity
of an anodized aluminum surface for radiation incident from various 8
directions and originating from sources at various temperatures. The
quantity p}(B) is the fraction of the incident energy that is reflected into
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FIGURE 5-12.— Approximate directional total absorptivity of anodized aluminum at room
temperature relative to value for normal incidence. (Redrawn from data of Munch

(ref. 19).)

the specular direction; hence, 1—p!(8) is the fraction of the incident
energy that is absorbed plus the fraction of the incident energy reflected
into directions other than the specular direction. For the specimens
tested, only a few percent of the energy was reflected into directions other
than the specular direction. Thus, in figure 5-12, the quantity 1 —pyB)
can be regarded as a good approximation to the directional total ab-
sorptivity. The curves have all been normalized to pass through unity at
B=0; hence, it is the shapes of the curves that are significant. At low
source temperatures, the incident radiation is predominantly in the long
wavelength region. This incident radiation is barely influenced by the
thin oxide film on the anodized surface; consequently, the specimen acts
like a bare metal and has large absorptivities at large angles from the
normal. At high source temperatures where the incident radiation is
predominantly at shorter wavelengths, the thin oxide film has a significant
effect and the surface behaves as a nonmetal where the absorptivity
decreases with increasing 8.

The structure of the surface coating can also have a substantial
effect on the radiative behavior. Figure 5-13 shows the hemispherical
spectral reflectivity of aluminum coated with lead sulfide. The mass of
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FIGURE 5-13. — Hemispherical spectral reflectivity for normal incident beam on aluminum
coated with lead sulfide. Coating mass per unit surface area, 0.68 mg/cm?. (Data from
ref. 20.)

the coating per unit area of surface is the same for both sets of data
shown. The difference in crystal structure and size causes the reflectivity
of the coated specimens to differ by a factor of 2 at wavelengths longer
than about 3 pum.

5.4 RADIATIVE PROPERTIES OF OPAQUE NONMETALS

Roughly speaking, nonmetals are characterized by large values of
total hemispherical emissivity and absorptivity at moderate temperatures
and, therefore, generally small values of reflectivity in comparison
with metals. For a clean optically smooth surface, several results were
arrived at in chapter 4 by use of the simplified electromagnetic theory
presented there. These provide the following generalizations (bearing
in mind the rather stringent assumptions of the theory): the directional
emissivity will decrease with increasing angle from the surface normal;
wavelength dependence is often weak, as it enters the predicted prop-
erties through the refractive index which varies slowly with wavelength
for many nonmetals; finally, the temperature dependence of the prop-
erties of nonmetals will also be small, since temperature also enters
the prediction only through the refractive index which is usually a weak
function of temperature.

The difficulty with these generalizations is that most nonmetals
cannot be polished to the degree necessary to allow their surfaces to be
considered ideal, although some common exceptions exist such as glass,



RADIATIVE PROPERTIES OF REAL MATERIALS 147

large crystals of various types, gem stones, and some plastics (some of
these are not opaque materials like those being discussed here). As a
result of having such nonideal surface finishes, many nonmetals, in
practice, deviate radically from the behavior predicted by electro-
magnetic theory.

Available property measurements for nonmetals are much less
detailed than for metals. Specifications of the surface composition,
texture, and so forth, are often lacking. Table 5-1 (taken from ref. 1)
illustrates this, as the type of wood, texture of the brick, and compo-
sition of the oil paint are unspecified. This table does reveal the large
emissivity values that many of the nonmetal materials have at room
temperature.

TABLE 5-1. — NORMAL ToTAL EMISSIVITY OF
NONMETALS AT RooM TEMPERATURE (68° F)

[Data from Gubareff et al. (ref. 1)]

Material €,
Brick.......cocoiiiiiiiiiii 1 094
Lampsoot. 95
Oil paint.......c..ccooiviiiiinn. .89 to .97
Roofing paper......................... 91
Hard rubber...............c......ou0ee 92
Wood....c.coneeeniiiiiiiiiiiiiciaens 8t0 9

An effect which complicates the interpretation of the measured
properties of nonmetals is that radiation passing into such a material
may penetrate quite far (this is evident for visible wavelengths in glass
as an example) before being absorbed. A specimen must be of sufficient
thickness to absorb essentially all the radiation that enters it; if it does
not, it cannot be considered opaque and transmitted radiation must be
accounted for. Often, samples of nonmetals such as paints are sprayed
onto a metallic or other opaque base (substrate), and then the properties
of the composite are measured. If in such a case it is desired to have the
surface behave completely as the coating material, the thickness of the
nonmetal coating must be sufficient to assure that no significant radiation
is transmitted through the coating. Otherwise, when making a reflectivity
measurement, some of the incident radiation will be reflected from the
substrate and then transmitted again through the coating to reappear
as energy measured by the instruments. The measured data will then
be a function of both the coating material and the substrate.



148 THERMAL RADIATION HEAT TRANSFER

10— T

8 //; :7

/ // /—-— Substrate
6— ., ———— Substrate with roughness
) / / ! / filled by zinc oxide

K / Coating

Normai spectral emissivity, €} (N

4 / ;A thickness,
SR/ n
’, ,// _—
2 /"/ ——--— .10 | Filled substrate
7 —-—-— .20 ( plus coating
- —_——
| | | | | |
0 2 4 6 8 10 12 14

Wavelength, A, pm

FIGURE 5-14.—Emissivity of zinc oxide coatings on oxidized stainless steel substrate.
Surface temperature, 880 = 8° K. (Data from ref. 11.)

In emissivity measurements of a coating material, the coating must be
thick enough that no emitted energy from the substrate penetrates the
coating. A good illustration is given by Liebert (ref. 11). He examined the
spectral emissivity of zinc oxide on a variety of substrates, using various
oxide thicknesses. The effect of coating thickness on the emissivity of the
composite formed by the zinc oxide coating and a substrate of approxi-
mately constant normal spectral emissivity is shown in figure 5-14.
The effect of increasing the coating thickness becomes small in the
range of 0.2- to 0.4-millimeter (mm) thickness, indicating that the emis-
sivity of the zinc oxide alone is being approached.

We will now examine the effects of wavelength, temperature, and
surface roughness on the radiative properties of dielectrics and then
briefly examine the radiative properties of semiconductors.

5.4.1 Spectral Measurements

Compared with metals, there are relatively few detailed spectral
measurements for dielectrics. Figure 5-15 shows the hemispherical-
normal spectral reflectivity for three paint coatings on steel. From
Kirchhoff’s law and the reflectivity reciprocity relations, we can regard
the difference between unity and these reflectivity values as the normal
spectral emissivity. The three paints shown all exhibit somewhat
different characteristics. White paint has a high reflectivity (low emis-
sivity) at short wavelengths, and the reflectivity decreases at longer
wavelengths. Black paint, on the other hand, has a relatively low reflec-
tivity over the entire wavelength region shown. Using aluminum powder
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FIGURE 5-15.—Spectral reflectivity of paint coatings. Specimens at room temperature.
(Data from ref. 21.)

in a silicone base as a paint increases the reflectivity as would be ex-
pected for the more metallic coating. This particular specimen of
aluminized paint acts approximately as a “gray” surface since the
properties are reasonably independent of wavelength. Because of the
large variation in spectral emissivity at short wavelengths, the gray
approximation would be poor for the white paint unless very little of the
participating radiation were at the shorter wavelengths.

Figure 5-16 illustrates that at the short wavelengths in the visible
range the reflectivity for some nonmetals may decrease substantially.

1.00

Norton RA 4213—\‘

Spectral directional-hemispherical
reflectivitiy, p;(\, B = 9°)
g

Visible range

Y e el I Y Y Y
R .6 1.0 1.4 1.8 2.2 2.6 3.0
Wavelength, A, um

FIGURE 5-16. —Spectral directional-hemispherical reflectivity of aluminum oxide. Incident
angle, 9°; specimens at room temperature. (Data from ref. 5.)
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This behavior is very important when considering the suitability of a

specific nonmetallic coating for reflecting
ature source where much of the energy

5.4.2 Variation of Total Propertie

radiation from a high temper-
will be at short wavelengths.

s With Temperature

The effect of surface temperature on the total emissivity of several
nonmetallic materials is shown in figures 5-17 to 5-19. Both increasing
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less steel Hemispherical total
O Zirconia (opague coating) emissivity
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A Silicon carbide coating on
graphite
v Magnesium oxide refractory
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D> Black heat-resistant paint y
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FIGURE 5-17.—Effect of surface temperature on

emissivity of dielectrics. (Data from

GubarefT et al. (ref. 1).)



RADIATIVE PROPERTIES OF REAL MATERIALS 151

. .8

2

3 N

53 .6

s & 5 A

=V 4 oL

g 5=

5 .3 l O

2 [ I N B R
-460 0 500 1000 1500 2000 2500 3000

Temperature, Ty, °F

L | I J
500 1000 1500 2000
Temperature, Ty, °K

T

FiGURE 5-18. —Effect of surface temperature on normal total emissivity of aluminum
oxide. (Data from ref. 5.)

T

£ 8 - O Calcium stabilized

2 A A Magnesium stabilized

2_ 4k

=< |

3% 6

= S

©

E a4 I

3 , |
-400 0 500 1000 - 1500 2000 2500 3000

Temperature, Ty, °F

L | L | |
0 500 1000 1500 2000

Temperature, Ty, °K

FIGURE 5-19. —Effect of surface temperature on normal total emissivity of zirconium oxide.
(Data from ref. 5.)

and decreasing emissivity trends with temperature are observed. Some
of these effects may be caused by the fact that the dielectric coating is
rather thin; hence, the properties are influenced by the temperature and
spectral .characteristics of the underlying material (substrate). For
example, as shown in figure 517, magnesium oxide refractory exhibits
a significant emissivity decrease with increasing temperature. For a
silicon carbide coating on graphite, however, the emissivity increases
with temperature; this may be partly caused by the emissive behavior
of the graphite substrate, which was shown in figure 54 to increase with
temperature.

White and black paint both have high emissivities for the temperature
range shown as is typical for ordinary oil-base paint. Aluminized paint is
considerably lower in emissive ability since it behaves partly like a metal.
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FIGURE 5-20.— Normal total absorptivity of nonmetals at room temperature for incident
black radiation from source at indicated temperatures. (Data from Gubareff et al.
(ref. 1).)

Note that the emissivity for aluminized paint in figure 5-17 is about
one-half that in figure 5-15. This further emphasizes the wide variation
in properties that can be found for samples having the same general
description. For applications where the property values are critical, it
may often be necessary to make radiation measurements for the specific
materials being used.

Figure 5-20 gives the normal total absorptivity of a few materials for
blackbody radiation incident from sources at various temperatures.
White paper is shown to be a good absorber for radiation emitted at low
temperatures but is a poor absorber for the spectrum emitted at tempera-
tures of several thousand degrees Fahrenheit. It is thus a reasonably good
reflector of energy incident from the Sun. An asphalt pavement or a
gray slate roof, on the other hand, absorbs energy from the Sun very well.

5.4.3 Effect of Surface Roughness

In figure 5-21 the bidirectional total reflectivity of typewriter paper
is shown for three different angles of incidence. For an ideal (polished,
smooth) surface, a specular peak would be expected with the angle of
reflection and the angle of incidence symmetric about the normal;
obviously, the surface finish of typewriter paper is not ideal, since the
reflected intensity occupies a rather large angular envelope around the
direction of specular reflection.
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Angle of reflection, B,, deg
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Bidirectional total reflectivity, p"(8,0,B,,6, =8 + )

FIGURE 5-21.—Bidirectional total reflectivity of typewriter paper in plane of incidence.
Source temperature, 2120° R (1178° K). (Replotted from data of Munch (ref. 19).)

The type of curves shown in figure 5-21 has suggested character-
izing reflected energy as a combination of a purely diffuse plus a purely
specular component. This type of approximation has merit in some cases
and results in a simplification of radiant interchange calculations in
comparison with the use of exact directional properties (refs. 12 and 13);
in other cases, however, the approximation would fail completely. An
example is shown in figure 5-22. This figure shows the observed bi-
directional total reflectivity for visible light reflected from the surface
of the Moon. These particular curves are for the mountainous regions,
but very similar curves are obtained for other areas. The interesting
feature of these curves is that the peak of the reflected radiation is back
into the direction of the incident radiation. This peak is located at a
circumferential angle 6 of 180° away from where a specular peak would
occur.

A moment’s thought will confirm that curves of this type must charac-
terize the lunar reflectivity. At full moon, which occurs when the Sun,
Earth, and Moon are almost (but not quite) in a straight line (fig. 5-23),
the Moon appears equally bright across its face. For this to be true, it
follows that an observer on Earth sees equal intensities from all points
on the Moon. However, the solar energy incident upon a unit area of the
lunar surface varies as the cosine of the angle 8 between the Sun and the
normal to the lunar surface. The angle B varies from 0° to 90°, as the posi-
tion of the incident energy varies from the center to the edge of the lunar
disk. To reflect a constant intensity to an observer on Earth from all
observable points on the lunar surface therefore requires that the

295-763 OL-68—11



THERMAL RADIATION HEAT TRANSFER

154

*((2Z "J2I) BAOJL() 191JB) 20BUINS IRUN]
jo suordal SNOUTRIUNOW 10] (£ 4@ ="g) ouapioul jo oued u1 A11A103paI (101 [BUONDAIIPIY — 7S AUNOL]

(@ + 8799’00 ‘Auaidajas (30} [euo1yIPIG
'S € z U 0 U A ¢ y:

06

sl ; <l

‘a3uapIduy
10 3|buy

111 sl-

0
bap “dd yoiydeyjad Jo ajbuy




RADIATIVE PROPERTIES OF REAL MATERIALS 155

Intercepted incident energy
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FIGURE 5-23. — Reflected energy at full moon.

product p"(B, B;) cos B be constant. Consequently, the value of the
bidirectional reflectivity in the direction of incidence must increase
approximately in proportion to 1/cos 8 (shown by the dashed line in
fig. 5-22) as the angle of incidence increases. This change in reflectivity
with angle of incidence will compensate for the reduced energy incident
per unit area on the Moon at the large angles. The reflectivity behavior
is confirmed by the curves in figure 5-22. Hence, the fact that the Moon
appears uniformly bright does not imply that it is a diffuse reflector. If
the Moon were diffuse, it would appear bright at the center and dark at
the edges.

5.4.4 Semiconductors

Semiconductors are arbitrarily considered here along with the non-
metals, but they behave partly as metals. Liebert (ref. 14) has shown that
their radiative properties can be determined through electromagnetic
theory by treating semiconductors as metals with high resistivity. In
figure 5-24, the normal spectral emissivity of a silicon semiconductor is
shown. The Hagen-Rubens relation shown for comparison is based on
the dc resistivity measured for the same sample, one of the few cases
where such comparable emissive and electrical data are available. Agree-
ment does not become good until wavelengths are reached that are much
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FIGURE 5-24.—Normal spectral emissivity of a highly doped silicon semiconductor at
room temperature. (Data from ref. 14.)

greater than those giving agreement for metals. This difference in range
of agreement can be traced to the following assumption used in deriving
the Hagen-Rubens equation (see section 4.6.2.2):

()

2mcorey

For semiconductors, where the resistivity is larger than it is for metals,
this inequality cannot hold until a range of wavelengths larger than those
for metals is reached.

The shape of the curve measured for silicon (fig. 5-24) resembles
what would be expected for a polished metal (see, for example, the
tungsten data in fig. 5-3). The emissivity increases with decreasing
wavelength over much of the measured spectrum, with a peak occurring
at shorter wavelengths. However, most of the features of the semi-
conductor curve occur at longer wavelengths than for a metal; the peak
emissivity, for example, is well outside the visible region.

Liebert (ref. 14) was also able to show excellent agreement between
the measured emissivity and predictions from electromagnetic theory
which included the effects of free electrons and was more sophisticated
than that discussed in chapter 4. The theoretical equations were eval-
uated by using required physical properties that were measured from
the specific samples on which the emissivity measurements were made.

5.5 SPECIAL SURFACES

For engineering purposes, it is often desirable to tailor the radiative
properties of surfaces to increase or decrease their natural ability to
absorb, emit, or reflect radiant energy. This can be done to provide two
general types of behavior, a desired spectral performance or desired
directional characteristics.
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5.5.1 Modification of Spectral Characteristics

In applications of surfaces for use in the collection of radiant energy,
such as in solar distillation units, solar furnaces, or solar collectors for
energy conversion, it is desirable to maximize the energy absorbed by a
surface while minimizing the amount lost by emission. In solar thermi-
onic or thermoelectric devices, it is desirable to maintain the highest
possible equilibrium temperature on the surface exposed to the Sun.
Here again a maximum-collection, minimum-loss performance is needed.
Later in this section the condition will be discussed where it is desirable
to keep a surface cool when it is exposed to the Sun. In the latter case,
it is desirable to have a maximum solar reflection accompanied by a
maximum radiative emission from the surface.

For purposes of solar energy collection, a black surface will, of
course, maximize the absorption of incident solar energy; unhappily,
it also maximizes the emissive losses. However, if a surface could be
manufactured that had an absorptivity large in the spectral region of
short wavelengths about the peak solar energy, yet small in the spectral
region of longer wavelengths where the peak emission would occur, it
might be possible to absorb nearly as well as a blackbody while emitting
very little energy. Such surfaces are called “spectrally selective.” One
method of manufacture is to coat a thin, nonmetallic layer onto a metallic
substrate. For radiation with large wavelengths, the thin coating is essen-
tially transparent, and the surface behaves as a metal yielding low values

10—
—0O— Silicon oxide on aluminum
(ref. 23)

——— Silicon oxide-germanium-

2 .8 copper (ref. 24)
< ——-— |deal selective surface for
s incident solar energy to
> drive Carnot cycle (ref. 25)
Zz g —— — Assumed selective surface
'g for example problem
2
I
g 4
g
=
£
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\ ~L
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Wavelength, A, um

FIGURE .5-25. — Characteristics of some spectrally selective surfaces.
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for the spectral absorptivity and emissivity. At short wavelengths, how-
ever, the radiation characteristics approach those of the nonmetallic
coating so that the spectral emissivity and absorptivity are relatively
large. Some examples of material behavior of this type are shown in
figure 5-25.

An ideal solar selective surface would absorb a maximum solar
energy while emitting a minimum amount of energy. The surface would
thus have an absorptivity of unity over the range of short wavelengths
where the incident solar energy has a large intensity. At longer wave-
lengths, the absorptivity should drop sharply to zero. The wavelength
Ae at which this sharp drop occurs is termed the cutoff wavelength.

EXAMPLE 5-1: An ideal selective surface is exposed to a normally
incident flux of radiation corresponding to the average solar constant
gi, where ¢i=442 Btu/(hr)(sq ft). The only means of heat transfer to
or from the surface is by radiation. Determine the maximum equilib-
rium temperature Teq corresponding to a cutoff wavelength of Ac=1 pm.
(Note that the energy arriving from the Sun can be assumed to have a
spectral distribution proportional to that of a blackbody at 10 000° R.)

Since the only means of heat transfer is by radiation, the radiant
energy absorbed must be equal to that emitted. Since we have specified
an ideal selective absorber, the hemispherical emissivity and absorptivity
are given by

a(M)=ax(\)=1,0s A <A,
and

a(M)=ax(A) =0, AcsA <
The energy absorbed by the surface per unit time is
Qo= (1)Fo-r (Tr)qiA

where Fo_,.(Tk) is the fraction of blackbody energy in the range of wave-
lengths between zero and the cutoff value, for a radiating source at
temperature T. In this case, Tk is the effective solar radiating tempera-
ture of about 10 000° R. Similarly, the energy emitted by the selective
surface is

Qe= (1)For(Teq)o T A

Equating Q. and Q, yields
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iFo-x (T
T4 Fo-r,(Teq) _—_q"—;(i)

For the chosen value for A, all terms on the right are known, and we
can solve for Te, by trial and error. The equilibrium temperature for
Ac=1 um, as specified in the problem, is 2400° R. Values of Teq corre-
sponding to other values of A. are given in the following table:

Cutoff Equilibrium
wavelength, | temperature,
Ac, Teq,
pm °R
0.6 3250
8 2750
1.0 2400
1.2 2150
15 1890
—> 712

For a blackbody (A.— x), the equilibrium temperature is 712° R: this
is the equilibrium temperature of the surface of a black object in space
near the Earth’s orbit when exposed to solar radiation and with all other
surfaces of the object perfectly insulated. The same equilibrium tem-
perature is reached by a gray body, since a gray emissivity would
cancel ou: of the energy balance equation.

As smaller values of A, are taken, Teq continues to increase even
though less energy is absorbed, because it becomes relatively more
difficult to emit energy as A. is decreased.

A common measure of the performance of a given selective surface
is the ratio of the directional total absorptivity o' (B, 8, T,) of the surface
for incident solar energy to the hemispherical total emissivity of the
surface €(T4). The ratio a'/e for the condition of incident solar energy
is a measure of the theoretical maximum temperature that an otherwise
insulated surface can attain when exposed to solar radiation. The
significance of a'/e is shown as follows.

The energy absorbed per unit time by any surface when exposed
to a directional incident intensity is given by

thll(Bv 09 TA) =a'(Bs 0, TA)dQ; (B’ 0) (5_1)

For the case of solar energy with a flux of g; =442 Btu/(hr)(sq ft), incident
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from direction (8, ) on a surface element dA, this can be written as
dQ.(B, 8, T4) =a'(B, 8, T4)qidA cos B (5-2)

The total energy emitted per unit time by the surface element is
given by

dQ.=e(T4)dA=€(T4)oTi dA (5-3)

If the only energy absorbed by the surface in question is that given by
equation (5-2) and the surface only loses energy by radiation, the
emitted and absorbed energies as given by equations (5-3) and (5-2),
respectively, may be equated to give

o' (B, 0, Teq) __oTeq _
€(Teq) gi cos B (5=4)

where Teq is the equilibrium temperature that is achieved. Thus, the
ratio o' (B, 0, T4)/e(T4) is a measure of the equilibrium temperature of
the element. Note also that the temperature at which the properties o’
and € are selected must be the equilibrium temperature that the body
attains. In practice, temperature dependence of the properties is often
assumed small so that this restriction can be somewhat relaxed.

The most common case considered is when the solar radiation is
incident in the direction normal to the surface. Equation (5-4) becomes

ap(Teq)  oTh
e 5-5
(T @ (5-5)

Equation (5-5) shows that the smaller the value of aj/e that can be
reached, the smaller will be the equilibrium temperature. For a cryo-
genic storage tank in space, ap/€ should be as small as possible. In
practice, values of ay/€ in the range 0.20 to 0.25 can be obtained.

To attain high equilibrium temperatures, ay/e should be as large
as possible. Polished metals attain /e values of 5 to 7, while specially
manufactured surfaces have values of ay/e approaching 20.

The upper limit of ay/e is established by the thermodynamic argument
that the equilibrium temperature of the selective surface cannot exceed
the effective solar temperature of about 10 000° R. Substituting this solar
temperature value into equation (5-5) gives

a,(Teq) _ (10 000)*
€(To)) |mx 42 L 38710 (5-6)
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Attaining anything even close to this value of alfe is far beyond the
present state of the art.

EXAMPLE 5-2: The properties of a real SiO-Al selective surface can be
approximated by the long-dashed curve of figure 5-25. (It is assumed
that the long-dashed curve can be extrapolated toward A=0 and A = 00,)
What is the equilibrium temperature of the surface for normally incident
solar radiation when the only heat transfer is by radiation? What is
an/e for the surface? Describe the spectra of the absorbed and emitted
energy at the surface. (Assume normal and hemispherical emissivities
are equal.)

As in the derivation of equation (5-5), we equate the absorbed and
emitted energies. The emissivity has nonzero values on both sides of
the cutoff wavelength, so that

Qa=€o-rFo-r,(Tk) gid + €r o Frpu(Ti) i = i
and
Qe= €0-rFo-rc(Teq) TTY A+ €rp-oof oo (Teq) aTH A= eoTiA
Equating Q. and Q, gives

{0.95F 0-r(T) +0.05[1 — Fo_r.(Tx) 1} g:
={0.95F s _»(Teq) +0.05[1 — Fy_r (Teq) 1} T,

Solving by trial and error as in example 5-1, we obtain for A\, =1.5 pmm,
Teq=1430° R. For ¢;=442 Btu/(hr)(sq ft), equation (5-5) gives
a,/e=0(1430)/442=16.2. The small difference in properties in this
example from the properties of an ideal selective surface produced a
significant change in T, which from the previous example was 1890° R
for an ideal selective surface having the same cutoff wavelength. The
spectral curves of absorbed and emitted energy are shown in figure 5-26.
The spectral curve of incident solar energy is given by

exn.i(N, Tr) = exp(A, Tr)

It has the shape of the blackbody curve at the solar temperature, but it
is reduced in magnitude so that the integral of e, ; over all A is equal
to g, the total incident solar energy per unit area. Multiplying this
curve by the spectral absorptivity of the selective surface gives the
spectrum of the absorbed energy. The spectrum of emitted energy
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FIGURE 5-26. — Spectral distribution of energy absorbed and emitted by example selective
absorber.
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FIGURE 5-27.— Emittance of sheets of window glass at 1000° C. (Data from Gardon (ref. 26).)
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is that of a blackbody at 1420° R multiplied by the spectral emissivity
of the selective surface. The integrated energy under the spectral
curves of absorbed and emitted energy are equal, although this is not
obvious from the log-log plot.

EXAMPLE 5-3: A selective surface having spectral characteristics as
given in the previous example is to be used as a solar energy absorber.
The surface is to be maintained at a temperature of 74=712° R by ex-
tracting energy to be used in a power generating cycle. If the absorber
is placed in orbit around the Sun at the same radius as the Earth, how
muck net energy will a square foot of the surface provide? How does this
energy compare with that supplied by a black surface at the same
temperature?

The net energy extracted from the surface is the difference between
that absorbed and that emitted. The absorbed energy flux is as in
example 5-2

ga={0.95F0- (Tx) +0.05[1—Fo_»_(Tr)]}g:
=[0.95(0.869) + 0.05(1 —0.869) 1442

Btu
=368 (hr)(sq ft)

The emitted flux is
ge={0.95F_1(T4) +0.05[1—Fo_» (T4) 1}oT4
={0.95 X (~0) +0.05[1— (~ 0)]}0.1712 X 10-8 X (712)*

Btu
=220 6q

and the net energy that can be used for power generation is (368 —22)
= 346 Btu/(hr)(sq ft). For a black or gray body, the equilibrium tempera-
ture was found in example 5-1 as 712° R, so that the net useful energy
that could be removed from such a surface would be zero.

Although it is partly a transmission effect, it is worth mentioning the
characteristic ability of a glass enclosure, such as a greenhouse, to trap
solar energy. A glass plate can also be used to cover a surface in order
to increase the efficiency of the surface as a solar absorber. The reason
for this is that many types of glass are spectrally selective with regard
to their transmission of radiation. Figure 5-27 shows the emittance
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(being an extensive property) of window glass sheets of various thick-
nesses, and the form of the curves with regard to variation with wave-
length is opposite to that in figure 5-25. The cutoff wavelength is about
2.7 wm; this means that the glass has a low absorptance for solar radia-
tion which is primarily at the short wavelengths, and consequently inci-
dent solar radiation passes readily into a glass enclosure. The emission
from objects at ambient temperature inside the enclosure is at long
wavelengths and is trapped because of the high absorptance (poor
transmission) of the glass in this spectral region.

Another application in which spectrally selective surfaces can be
employed to advantage is where it is desirable to cool an object that is
exposed to incident radiation from a high-temperature source. The most
common situation would be objects exposed to the Sun, such as a gaso-
line storage tank, a cryogenic fuel tank in space, or the roof of a building.
A highly reflecting coating could be utilized, such as a polished metal.
This would reflect much of the incident energy, but would be poor for
radiating away any energy that was absorbed or generated within the
enclosure (e.g., an enclosure filled with electronic equipment). Also,
some metals have a tendency toward lower reflectivity at the shorter
wavelengths; this is shown, for example, for uncoated aluminum in
figure 5-13. For some applications, it may be advantageous to use a
material that is spectrally selective; white paint as shown in figure 5-28
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FIGURE 5-28.— Reflectivity of white paint coating on aluminum. (Replotted from Dunkle
(ref. 27).)
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is an example. This will not only reflect the incident radiation which is
predominantly at short wavelengths but will also radiate well at the
longer wavelengths characteristic of the relatively low temperature of

the body.

5.5.2 Modification of Directional Characteristics

As discussed in previous sections of this chapter, the roughness of a
surface can have profound effects on the radiative properties and will
indeed become a controlling factor when the roughness is large in com-
parison with the wavelength of the energy being considered. This leads
to the concept of controlling the roughness in order to tailor the direc-
tional characteristics of a surface.

If the surface is used as an emitter, the surface might be roughened
or designed in such a way as to emit strongly in preferred directions,
while reducing emission into unwanted directions. Commercial radiant
area heating equipment would operate more efficiently using such sur-
faces by directing energy to the areas where it is most needed. The most
common device for controlling the directional distribution of electro-
magnetic radiation in the visible region is called a “lamp shade.”

If the directional surface were primarily used as an absorber, then,
using a solar absorber as an example, we might make it strongly absorb-
ing in the direction of incident solar radiation but as close as possible to
nonabsorbing in other directions. The surface would, because of Kirch-
hoff’s law for directional properties, emit strongly toward the Sun, but
weakly in other directions. The surface would absorb the same energy
as a nondirectional absorber since the incident energy is only from the
direction of the Sun but would emit less energy than a surface that
emits well into all directions.

The characteristics of one such surface are shown in figure 5-29. The
surface has very long grooves of angle 18.2° running parallel to each
other. A highly reflecting specular coating is placed on the side walls
of each groove, and a black surface is placed at the base of each groove.
The solid line gives the behavior predicted by analysis of such an ideal
surface, while the data points show experimental results for an actual
surface. It is seen that the directional total emissivity is very high for
angles of emission less than about 30° from the surface normal. It then
drops rapidly as the angle becomes larger. Many other such surface
configurations exhibit similar characteristics.

EXAMPLE 5-4: Suppose that a directional surface has a directional
total emissivity given by

e(B)=1 0=sB8=30°
€e(B)=0 B>30°
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FiGURE 5-29. — Directional emissivity of grooved surface with highly reflecting specular
side walls and highly absorbing base; d/D=0.649.

For solar radiation incident normally on such a surface on Earth with
no other heat exchange except by radiation from the directional surface,
what is the equilibrium' temperature of the surface? How does this
temperature compare with that achieved by a black surface?

The absorptivity of this surface for normal incident radiation is unity.
Therefore, the absorbed energy per unit time is

Qa=(1)qid

where g¢; is again the solar constant for an object at a distance equal to
the mean radius of the Earth’s orbit from the Sun (g; = 442 Btu/(hr)(sq f1)).

The energy emitted by the body when it is at thermal equilibrium is
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Qe=eaTiA

where € is the hemispherical total emissivity given by equation (3-6b) as

e =1 [ €(8.0.T) cos p do
T Jjo
For this problem, € becomes

2w 3

€e=— sin B cos B8dB=0.25
T JB=0

Equating Q, and Q. for radiative equilibrium gives

gi 1/4 442 1/4
- (2)"=( )" 1005

€ 0.25%0.1712 X 10-8

This is larger than the equilibrium temperature of a black or gray dif-
fuse body of 712° R as shown in example 5-1.

Note that equation (5-5) can be used for the aj/e of directional as
well as spectrally selective surfaces. For the surface used in this ex-
ample, an/e=4.0. Combining selective and directional effects would
be a way for obtaining considerably increased values of an/e for a given
surface.

It should not be inferred that the directional distribution of emis-
sivity assumed in this example corresponds to that of the parallel
grooved surface in figure 5-29. In the case of figure 5-29, there is a
strong dependence on the angle 6, which has been ignored in this
example.

5.6 CONCLUDING REMARKS

The radiative property examples discussed in the present chapter
have illustrated a number of the features that may be encountered when
dealing with real surfaces. Certain broad generalizations could be at-
tempted. For example, the total emissivities of dielectrics at moderate
temperatures are larger than those for metals, and the spectral emis-
sivity of metals increases with temperature over a broad range of wave-
lengths. However, these types of rules can be misleading because of the
large property variations that can occur as a result of surface roughness,
contamination, oxide coating, grain structure, and so forth. The presently
available analytical procedures cannot account for all these factors so
that it is not possible to predict radiation property values directly except
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for surfaces that approach ideal conditions of composition and finish.
By coupling analytical trends with observations of experimental trends,
it is possible to gain some insight into what classes of surfaces would be
expected to be suitable for specific applications and how surfaces may
be fabricated to obtain certain types of radiative behavior. The latter
includes spectrally selective surfaces which are of great value in a num-
ber of practical applications such as the collection of solar energy.

Some other factors affecting radiative properties that evade prediction
are outside the range of interest in this work, but they should be men-
tioned. For example, it is well known that exposure to ultraviolet radia-
tion: cosmic rays; neutron, gamma, and proton bombardment: and the
solar wind can all cause significant changes in radiative properties. For
design of spacecraft, these effects are of major concern.

Finally, some comment on the measurement of radiative properties
should be given. It has been noted that few precise measurements of
directional spectral properties have been made. The reason for this
lies in one of the many practical difficulties involved. This is that for a
directional measurement the energy available for detection at a small
solid angle centered about a given direction is itself small. If only the
portion of this small energy that lies within a wavelength band is then
measured to obtain directional spectral values, an even smaller energy
is available for detection. Minor absolute errors in the measurement of
the energy can then lead to large percentage errors in the directional
properties being determined. Further, the sheer magnitude of the amount
of data generated for such combined directional spectral properties
precludes its gathering unless a very specific problem requires it. These
and similar practical problems make the field of thermal radiation prop-
erty measurement a most exacting and difficult one.
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Appendix

Tables of conversion factors between the mks and other common
systems of units are given in tables I to III of this appendix. In table IV,
accurate values of the various radiation constants are given in both mks
units and the common English engineering units. Finally, table V lists
various blackbody properties as functions of the variable AT, again in
both mks and English engineering units.

With regard to table V, Pivovonsky and Nagel (ref. 3) and Wiebelt
(ref. 4) have presented polynomial curves fitted to the function Fo_,r.
These curve fits can be quite useful for computer solutions of various
types of radiation problems. Wiebelt recommends use of the following
polynomials:

Fo_n=§m=1§z: — {[(mv+3)mv+6]mv+6},u =2
S L N O S L
F °‘”—1_n7"3(3 8760 5040 T 272160 13305600)’”<2
where
_C
YTNT

and C is given in table IV. The series is carried out to a sufficient number
of terms to gain the desired accuracy.
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TaBLE III. — CONVEREION FACTORs FOR ENERGY FLUX

cal/(secXcm?) | Btu/(hr)(ft?) W/m? erg/(sec)(cm?)
1 cal/(sec)cm?)?=........... 1 1.329 X 104 4.187 X 10* 4.187 %107
1 Btu/(hr){ft?)=............... 7.525 X 103 1 3.152 3.152 X 103
1 Wim2=.......cooiieeiniennd 2.388 X 103 0.3174 1 108
1 erg/(seclcm?)=...........| 2.388x10-% | 3.174 X 10* 10-3 1
2Based on International Steam Table.
TaABLE IV.— RADIATION CONSTANTS?
Symbol Definition Value
Clovernnenaeenenns Constant in Planck’s spectral energy. | 0.18892 % 108 0.59544 X 1012
distribution,  (Btu}(um?*)/(hrXft?);
W/cm?
Coevrreennnannenes Constant in Planck’s spectral energy 25898; 1.4388
distribution, (um)(°R); (cm)(°K)
Caereeernennanes Constant in Wien’s displacement law 5216.0; 0.28978
(um)(°R); (cm)(°K)
T ealculated: v+ ++ Calculated Stefan-Boltzmann con- 0.1712 X 10-8; 5.6693 X 10-'2
stant, Btu/(hr)(ft2)(°R%);
W/(em?)(°K*)
Gexperimental -+ ++ Experimental Stefan-Boltzmann 0.173 X 10-8; 5.729 X 10~12
constant, Btu/(hr)(ft2)(°R*);
W/i(em?)(°K*)

2 Recommended values from ref. 2.
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TABLE V.—BLACKBODY FUNCTIONS
Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, e)/Ts Blackbody between
fraction, successive
Fo_xr Foor
o Btu W values, AF
(m)CR)| (m)(K) (hr)(sq ftXumX°R%) | (cm?Xum)°K?)
1000 555.6 0.000671 X 10~ | 0.400 X 10-20 0.170 X 107 0
1100 611.1 .00439 .261 X 10-1® 136 x10-¢ 119 % 108
1200 666.7 .0202 120 1018 .756 X 10-¢ 620 X 108
1300 722.2 .0713 424 X 10— 3i7x10-5 .241 X 103
1400 771.8 .204 .00122 x 1015 .106 X 104 .748 X 103
1500 833.3 1496 X 10-15 .00296 x 1015 .301 X101 194X 104
1600 888.9 1.057 00630 .738 X104 437 X 104
1700 944 .4 2.023 .01205 .161 x 103 876 X 10—+
1800 1000.0 3.544 .02111 321 x10-3 .00016
1900 1055.6 5.767 .03434 .589 x10-3 .00027
2000 1111.1 8.822 X 1015 .05254 X 1015 .00101 00042
2100 1166.7 12.805 07626 .00164 .00063
2200 1222.2 17.776 .10587 .00252 .00089
2300 1277.8 23.746 .14142 .00373 .00121
2400 1333.3 30.686 .18275 .00531 .00158
2500 1388.9 38.526 X 1015 .22945 X 1018 .00733 .00202
2600 1444.4 47.167 .28091 .00983 .00250
2700 1500.0 56.483 .33639 .01285 .00302
2800 1555.6 66.334 .39505 .01643 .00358
2900 1611.1 76.571 .45602 .02060 .00417
3000 1666.7 87.047 X 1018 51841 X 1015 .02537 .00477
3100 1722.2 97.615 .58135 .03076 00539
3200 1777.8 1108.14 64404 .03677 .00600
3300 1833.3 |118.50 .70573 .04338 .00661
3400 1888.9 ]128.58 .76578 .05059 .00721
3500 1944.4 1138.29 x 1015 .82362 x 1018 .05838 .00779
3600 2000.0 }147.56 .87878 .06672 .00834
3700 2055.6 1156.30 .93088 .07559 .00887
3800 2111.1 164.49 97963 .08496 .00936
3900 2166.7 172.08: 1.0248 .09478 .00982
4000 2222.2  |179.04 X 1015 1.0663 X 10-15 .10503 .01025
4100 2277.8 1185.36 1.1039 .11567 .01064
4200 2333.3 {191.05 1.1378 .12665 .01099
4300 2388.9 |196.09 1.1678 .13795 01130
4400 2444.4  ]200.51 1.1942 .14953 .01158
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TABLE V.— BLACKBODY FUNCTIONS ~ Continued

Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, exs/T® Blackbody between
fraction, successive
Foorr Foor
o o Btu \ values, AF
(wm)CR)| (um)CK) | G q i em)CR®) | TomBpm)(K)
4500 2500.0 | 204.32 % 10-13 1.2169 X 10~ 0.16135 0.01182
4600 2555.6 | 207.55 1.2361 17337 ,01202
4700 2611.1 | 210.20 1.2519 .18556 .01219
4800 2666.7 | 212.32 1.2645 .19789 .01233
4900 2722.2 | 213.93 1.2741 .21033 .01244
5000 2777.8 | 215.06 X 1013 1.2808 X 10-13 22285 .01252
5100 2833.3 | 215.74 1.2848 .23543 01257
5200 2888.9 | 216.00 1.2864 .24803 101260
5300 2944.4 | 215.87 1.2856 .26063 .01260
5400 3000.0 | 215.39 1.2827 27322 01259
5500 3055.6 | 214.57x10°" 1.2779 X 10-15 .28576 .01255
5600 3111.1 | 213.46 1.2713 .29825 .01249
5700 3166.7 | 212.07 1.2630 .31067 .01242
5800 3222.2 | 210.43 1.2532 32300 01233
5900 3277.8 | 208.57 1.2422 .33523 01223
6000 3333.3 | 206.51 X 10°'® 1.2299 x 10-15 .34734 01211
6100 3388.9 | 204.28 1.2166 .35933 .01199
6200 3444.4 | 201.88 1.2023 37118 01185
6300 3500.0 | 199.35 1.1872 .38289 01171
6400 3555.6 | 196.69 1.1714 .39445 .01156
6500 3611.1 193.94 X 10~ 1.1550 X 1013 .40585 01140
6600 3666.7 | 191.09 1.1380 .41708 01124
6700 3722.2 | 188.17 1.1206 .42815 01107
6800 3777.8 | 185.18 1.1029 .43905 .01089
6900 3833.3 | 182.15 1.0848 44977 .01072
7000 3888.9 | 179.08 X 10-'5 1.0665 X 10-15 .46031 .01054
7100 3944.4 | 175.98 1.0481 47067 .01036
7200 4000.0 | 172.86 1.0295 .48085 .01018
7300 4055.6 | 169.74 1.0109 .49084 .01000
7400 4111.1 166.60 0.99221 .50066 .00981
7500 4166.7 | 163.47x10-% 97357 X 1015 51029 .00963
7600 4222.2 | 160.35 95499 .51974 00945
7700 4277.8 | 157.25 193650 .52901 100927
7800 4333.3 | 154.16 01813 .53809 .00909
7900 4388.9- | 151.10 .89990 .54700 .00891
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TABLE V.—BLACKBODY FUNCTIONS — Continued

Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, e,/T* Black.body between
fr;cuon, successive

0-AT Fo—»\T

o o Btu L4 values, AF

R | WmXCK) | oo XmRD) | o ami RS
8000 4444 4 148.07 X 1015 0.88184 x 10-15 0.55573 0.00873
8100 4500.0 145.07 .86396 .56429 .00855
8200 4555.6 142.10 .84629 57267 .00838
8300 4611.1 139.17 .82884 .58087 .00821
8400 4666.7 136.28 .81163 .58891 .00804
8500 4722.2 133.43 X 1013 .79467 x 10-15 59678 .00787
8600 4777.8 130.63 77796 60449 .00771
8700 4833.3 127.87 .76151 61203 .00754
8800 4888.9 125.15 74534 61941 .00738
8900 4944 4 122.48 .72944 62664 .00723
9000 5000.0 119.86 X 1015 .71383 x 10-15 63371 .00707
9100 5055.6 117.29 .69850 64063 .00692
9200 51111 114.76 .68346 64740 .00677
9300 5166.7 112.28 .66870 .65402 .00662
9400 5222.2 109.85 165423 .66051 .00648
9500 52717.8 107.47 x 10-15 .64006 x 10-15 66685 .00634
9600 5333.3 105.14 62617 67305 .00620
9700 5388.9 102.86 .61257 67912 .00607
9800 5444 .4 100.62 .59925 68506 .00594
9900 5500.0 98.431 .58621 .69087 .00581
10000 5555.6 96.289 x 1015 57346 X 10-15 69655 .00568
10100 5611.1 94.194 .56098 70211 .00556
10200 5666.7 92.145 54877 70754 .00544
10300 5722.2 90.141 .53684 71286 .00532
10400 5777.8 88.181 .52517 .71806 .00520
10500 5833.3 86.266 X 1015 51376 X 1015 72315 .00509
10600 | 5888.9 84.394 .50261 .72813 -00498
10700 5944 .4 82.565 49172 .73301 .00487
10800 6000.0 80.777 .48107 713777 .00477
10900 6055.6 79.031 47067 74244 .00466
11000 6111.1 77.325x 10-15 .46051 x 10-15 74700 .00456
11100 6166.7 75.658 .45059 75146 .00446
11200 | 6222.2 74.031 .44089 .75583 .00437
11300 6277.8 72.441 .43143 76010 .00427
11400 6333.3 70.889 42218 76429 .00418
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TABLE V.— BLAckBODY FUNCTIONS — Continued
Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, ex/T® Blackbody between
fraction, successive
Foar Foor
o . Btu w values, AF
()R | (XKD | e ¥R | Comam) KD
11500 | 6388.9 69.373 < 1015 0.41315 % 10~ 0.76838 0.00409
11600 | 6444.4 67.892 40434 77238 .00401
11700 | 6500.0 66.447 .39573 .77630 .00392
11800 | 6555.6 65.036 .38732 .78014 .00384
11900 | 6611.1 63.658 .37912 .78390 .00376
12000 | 6666.7 62.313 X 10~ 37111 X108 18757 .00368
12100 | 6722.2 60.999 .36328 79117 .00360
12200 | 6777.8 59.717 .35565 .79469 .00352
12300 | 6833.3 58.465 .34819 .79814 .00345
12400 | 6888.9 57.242 .34091 .80152 .00338
12500 | 6944.4 56.049 X 10-15 .33380 x 10— .80482 .00331
12600 7000.0 54.884 .32687 .80806 .00324
12700 7055.6 53.747 .32009 81123 .00317
12800 7111.1 52.636 .31348 81433 .00310
12900 7166.7 51.552 .30702 81737 .00304
13000 | 7222.2 50.493 X 10-1* .30071 X 1013 .82035 .00298
13100 7277.8 49.459 29456 .82327 .00292
13200 7333.3 48.450 .28855 .82612 .00286
13300 7388.9 47.465 .28268 .82892 .00280
13400 | 7444.4 46.502 .27695 .83166 .00274
13500 7500.0 45.563 X 10~ 27135 X 10718 83435 .00269
13600 | 7555.6 44.645 .26589 .83698 .00263
13700 7611.1 43.749 .26055 .83956 .00258
13800 | 7666.7 42.874 .25534 84209 .00253
13900 7722.2 42.019 .25024 84457 .00248
14000 | 7777.8 41.184 X 10-15 24527 X 1015 .84699 .00243
14100 | 7833.3 40.368 .24042 .84937 .00238
14200 | 7888.9 39.572 .23567 85171 .00233
14300 7944 .4 38.794 23104 .85399 .00229
14400 | 8000.0 38.033 22651 .85624 .00224
14500 8055.6 37.291 x 1015 .22209 X 1018 .85843 .00220
14600 8111.1 36.565 21777 .86059 .00216
14700 8166.7 35.856 21354 .86270 .00211
14800 | 8222.2 35.163 .20942 86477 .00207
14900 | 8277.8 34.487 .20539 .86681 .00203
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TABLE V.—BLACKBODY FUNCTIONS — Continued

179

Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, ex/T> Blackbody between
fraction, successive
FO—XT FO—XT
o o Btu W values, AF
Em)R) | (emICK) | g R | (N yKD)
15000 | 8333.3 33.825x 1015 0.20145 X 10-15 0.86880 0.00199
15100 8388.9 33.179 .19760 .87075 .00196
15200 8444 4 32.547 .19383 .87267 .00192
15300 8500.0 31.929 .19016 .87455 .00188
15400 8555.6 31.326 .18656 .87640 .00185
15500 8611.1 30.736 X 10-15 .18305 x 10~ .87821 .00181
15600 8666.7 30.159 .17961 .87999 .00178
15700 8722.2 29.595 17625 .88173 .00174
15800 8777.8 29.043 17297 .88344 .00171
15900 8833.3 28.504 .16976 .88512 .00168
16000 8888.9 27977 x 10-15 .16662 x 10-1% .88677 .00165
16100 8944.4 27.462 .16355 .88839 .00162
16200 9000.0 26.957 .16055 .88997 .00159
16300 { 9055.6 | 26.464 .15761 .89153 .00156
16400 | 9111.1 25.982 15474 .89306 .00153
16500 9166.7 25.510 X 10-15 .15193 X 10-1 .89457 .00150
16600 | 9222.2 25.049 .14918 .89604 .00148
16700 9277.8 24.597 .14649 .89749 .00145
16800 9333.3 24.156 .14386 .89891 .00142
16900 9388.9 23.723 .14129 .90031 .00140
17000 9444 4 23.301 X 10-15 13877 X 10-15 .90168 .00137
17100 9500.0 22.887 .13630 .90303 .00135
17200 9555.6 22.482 .13389 90435 .00132
17300 9611.1 22.085 13153 .90565 .00130
17400 9666.7 21.697 .12922 .90693 .00128
17500 9722.2 21.318 X 10-15. .12696 x 10-13 .90819 00126
17600 9777.8 20.946 12475 90942 .00123
17700 9833.3 20.582 .12258 91063 .00121
17800 9888.9 20.226 12046 91182 .00119
17900 9944 .4 19.877 .11838 91299 .00117
18000 | 10000.0 19.536 x 10-15 11635 x 10-15 91414 .00115
18100 | 10055.6 19.201 11435 91527 .00113
18200 | 10111.1 18.874 11240 .91638 .00111
18300 |10166.7 18.553 .11049 91748 .00109
18400 |10222.2 18.239 .10862 91855 .00107
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TABLE V. —BLACKBODY FUNCTI0NS — Continued

-
Wavelength- Blackbody hemispherical spectral

temperature emissive power divided by fifth Difference
product, AT power of temperature, ex/T*® Black})ody between

fraction, successive

Fo-xr For
o o Btu W values, AF
(wm)R) | (XK | g foem) RS | (emXum) (K

18500 10277.8 17.931 X 10— 0.10679 X 10-'*| 0.91961 0.00106
18600 10333.3 17.630 .10500 .92064 .00104
18700 10388.9 17.335 .10324 92166 .00102
18800 10444.4 17.045 .10151 .92267 .00100
18900 10500.0 16.762 .09983 192365 .00099
19000 10555.6 16.484 X 10-13 .09817 X 10— .92462 .00097
19100 10611.1 16.212 .09655 192558 .00095
19200 10666.7 15.945 .09496 192652 .00094
19300 10722.2 15.684 .09341 92744 .00092
19400 10777.8 15.428 .09188 192835 .00091
19500 10833.3 15.177 X 1013 .09039 X 10-13 .92924 .00089
19600 10888.9 14.931 .08892 193012 .00088
19700 10944.4 14.690 .08749 .93098 00686
19800 11000.0 14.453 08608 .93183 .00085
19900 111055.6 14.221 .08470 93267 .00084
20000 | 11111.1 13.994 X 10-15 .08334 X 1015 .93349 .00082
20200 |11222.2 13.553 .08071 93510 .00161
20400 11333.3 13.128 .07819 .93666 .00156
20600 | 11444.4 12.720 .07575 .93816 .00151
20800 | 11555.6 12.327 07341 .93963 .00146
21000 11666.7 11.949 X 1015 07116 X 1013 94104 .00142
21200 | 11777.8 11.585 .06899 194242 .00137
21400 | 11888.9 11.234 06691 94375 .00133
21600 | 12000.0 10.897 .06490 94504 .00129
21800 12111.1 10.572 .06296 .94629 .00125
22000 | 12222.2 10.258 X 10-13 .06109 X 1013 .94751 .00122
22200 12333.3 9.956 05930 .94869 .00118
22400 12444.4 9.665 .05756 .94983 00115
22600 [ 12555.6 9.384 05589 195094 .00111
22800 12666.7 9.114 .05428 .95202 .00108
23000 12777.8 8.852 X 10-15 ©.05272 X 1G5 195307 .00105
23200 12888.9 8.60C .05122 .95409 .00102
23400 | 13000.0 8.357 .04977 195508 .00099
23600 13111.1 8.122 .04837 .95604 .00096
23800 13222.2 7.895 .04702 95698 .00093
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TABLE V. —BLACKBODY FUNCTIONS — Continued

Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, e\/T> Blackbody between
fraction, successive
Foor Foorr
o o Btu W values, AF
(m)°R) | (wm)CK) (hr)(sq ftXum)°R3) | (cm2(pm)K?3)
24000 | 13333.3 7.676 X 10—15 0.04572 x 1015 0.95788 0.00091
24200 | 13444 .4 7.465 .04446 .95877 .00088
24400 ) 13555.6 7.260 04324 .95963 .00086
24600 | 13666.7 7.063 04206 .96046 .00084
24800 113777.8 6.872 .04092 .96128 .00081
25000 | 13888.9 6.687 X 1015 .03982 x 10-18 .96207 .00079
25200 | 14000.0 6.508 .03876 .96284 .00077
25400 | 14111.1 6.336 .03773 .96359 .00075
25600 | 14222.2 6.169 .03674 .96432 .00073
25800 { 14333.3 6.007 ‘ 03577 .96503 .00071
26000 | 14444.4 5.850 X 10-15 .03484 x 1015 .96572 .00069
26200 | 14555.6 5.699 .03394 .96639 .00067
26400 ;| 14666.7 5.552 .03307 .96705 .00066
26600 | 14777.8 5.410 .03222 .96769 .00064
26800 | 14888.9 5.273 .03140 .96831 .00062
27000 | 15000.0 5.139 X 10-15 .03061 x 10-15 .96892 .00061
27200 [ 15111.1 5.010 .02984 .96951 .00059
27400 | 15222.2 4.885 .02909 .97009 .00058
27600 | 15333.3 4.764 .02837 .97065 .00056
27800 | 15444.4 4.646 .02767 .97120 .00055
28000 | 15555.6 4.532 x 10-15 .02699 X 10~13 97174 .00054
28200 | 15666.7 4.422 .02633 97226 .00052
28400 | 15777.8 4.315 .02570 97277 .00051
28600 | 15888.9 4.211 .02508 97327 .00050
28800 | 16000.0 4.110 .02448 97375 .00049
29000 | 16111.1 4.012x 1015 .02389 x 10-15 97423 .00047
29200 | 16222.2 3.917 .02333 97469 .00046
29400 | 16333.3 3.824 .02278 97514 .00045
29600 | 16444.4 3.735 102224 97558 .00044
29800 | 16555.6 3.648 .02172 .97601 .00043
30000 | 16666.7 3.563 X 10-13 .02122 x 10~-15 97644 .00042
30200 |16777.8 3.481 .02073 97685 .00041
30400 | 16888.9 3.401 .02026 97725 .00040
30600 | 17000.0 3.324 .01979 97764 .00039
30800 {17111.1 3.248 .01935 97802 .00038
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TABLE V.— BLACKBODY FUNCTIONS — Continued
Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, exs/T® Blackbody between
fraction, successive
Fo-rr Foar
° o Btu w values, AF
(wm)CR) | (kmICK) | G i am)CR) | (em?Xpm)K)
31000 | 17222.2 3.175x 1013 0.01891 X 10-15 | 0.97840 0,00037
31200 | 17333.3 | 3.104 .01849 97877 00037
31400 | 17444.4 | 3.035 .01807 97912 00036
31600 | 17555.6 2.967 .01767 97947 00035
31800 | 17666.7 2.902 .01728 97982 00034
32000 | 17777.8 2.838 X 10-1% .01690 x 1018 .98015 .00033
32200 | 17888.9 2.776 .01653 .98048 .00033
32400 | 18000.0 2.716 .01618 .98080 00032
32600 | 18111.1 2.657 101583 98111 .00031
32800 | 18222.2 | 2.600 61549 98142 00031
33000 | 18333.3 2.545 % 101® .01515 X 1013 98172 .00030
33200 | 18444.4 2.490 .01483 .98201 00029
33400 | 18555.6 2.438 .01452 .98230 00029
33600 | 18666.7 2.386 .01421 98258 00028
33800 | 18777.8 2.336 .01392 .98286 00028
34000 | 18888.9 2.288 X 10-13 101363 X 10-13 98313 100027
34200 | 19000.0 2.240 01334 98339 00026
34400 | 19111.1 2.194 .01307 .98365 00026
34600 | 19222.2 2.149 .01280 .98390 00025
34800 {19333.3 2.105 .01254 .98415 00025
35000 | 19444.4 2.062 X 1015 .01228 X 1013 .98440 00024
35200 | 19555.6 2.021 .01203 .98463 00024
35400 | 19666.7 |  1.980 01179 198487 00023
35600 | 19777.8 |  1.940 01156 98510 00023
35800 | 19888.9 |  1.902 01133 98532 00022
36000 | 20000.0 |  1.864%10-1 01110x 105 | 98554 00022
36200 | 20111.1 | 1.827 .01088 98576 00022
36400 |20222.2 | 1.791 01067 98597 00021
36600 |20333.3 | 1.756 01046 98617 00021
36800 | 20444.4 1.722 01026 .98638 00020
37000 | 20555.6 1.689 X 105 .01006 X 10~ .98658 00020
37200 | 20666.7 1.656 .00986 98677 00020
37400 | 20777.8 1.624 .00967 .98696 .00019
37600 | 20888.9 1.593 100949 98715 .00019
37800 | 21000.0 1.563 00931 .98734 .00018
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TABLE V.—BLACKBODY FUNCTIONS — Continued

Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, e/T® Blackpody between
fraction, successive
FO—AT FO—AT
o . Btu w values, AF
WX emXCK) | oq TR | (e XKD
38000 | 21111.1 1.533 X 10-15 0.00913 X 10-15 | 0.98752 0.00018
38200 | 21222.2 | 1505 00896 98760 00018
38400 | 21333.3 1.476 .00879 .98787 .00017
38600 | 21444.4 1.449 .00863 98804 .00017
38800 | 21555.6 1.422 .00847 .98821 .00017
39000 | 21666.7 1.396 x 10-15 .00831 x 10-1s .98837 .00016
39200 | 21777.8 1.370 .00816 98853 .00016
39400 | 21888.9 1.345 .00801 98869 .00016
39600 | 22000.0 1.320 .00786 .98885 .00016
39800 | 22111.1 1.296 .00772 .98900 .00015
40000 | 22222.2 1.273 X 10~ .00758 x 1015 .98915 .00015
42000 | 23333.3 1.065 .00634 99051 .00136
44000 | 24444.4 .898 .00535 .99165 .00114
46000 | 25555.6 762 .00454 199262 .00097
48000 { 26666.7 .651 .00388 99344 .00082
S0000 | 27777.8 .560 % 10-15 00333 x 1015 99414 .00071
52000 | 28888.9 .484 .00288 99475 ,00061
54000 | 30000.0 420 .00250 .99528 00053
56000 | 31111.1 .367 .00218 .99574 .00046
58000 | 32222.2 .321 .00191 .99614 00040
60000 { 33333.3 283 X 1013 .00168 x 1015 .99649 .00035
62000 | 34444.4 250 .00149 .99680 .00031
64000 } 35555.6 222 .00132 99707 .00027
66000 | 36666.7 197 .00117 99732 .00024
68000 | 37777.8 .176 .00105 99754 .00022
70000 | 38888.9 .158 X 10-1% .940 x 1018 99773 .00019
72000 | 40000.0 142 844 .99791 .00017
74000 | 41111.1 128 .760 .99806 .00016
76000 | 42222.2 115 .687 .99820 .00014
78000 | 43333.3 104 .622 .99833 .00013
80000 | 44444.4 .0948 x 1015 564 X 1018 .99845 .00012
82000 | 45555.6 .0862 513 .99855 .00010
84000 | 46666.7 .0786 .468 .99865 .00010
86000 | 47777.8 0718 .428 .99874 .00009
88000 | 48888.9 L0657 .391 .99882 .00008
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TABLE V.—BLackBODY FUNCTIONS — Concluded
Wavelength- Blackbody hemispherical spectral
temperature emissive power divided by fifth Difference
product, AT power of temperature, exs/T> Blackbody between
fraction, successive
Foar Forr
Btu W values, AF
m)(°R m)(°K ’
wm)(R) | m)CK) | e FmCR®) | cmDem)CK)
90000 | 50000.0 0.0603 x 10-1® 0.359 X 1018 0.99889 0.00007
92000 | 51111.1 .0554 .330 .99896 .00007
94000 | 52222.2 .0510 304 .99902 .00006
96000 | 53333.3 .0470 .280 199908 .00006
98000 | 54444.4 .0434 .259 .99913 .00005
100000 | 55555.6 L0402 X 10~ 2391018 .99918 .00005
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Index

absolute temperature, 21
absorbing media in electromagnetic theory, 9, 98, 109, 116
absorptiv_ity,
definition, 64
directional spectral, 49, 64
directional total, 49, 66
hemispherical speciral, 49, 67
hemispherical total, 49, 68
relation to emissivity, 66, 67, 68, 69, 70
relation to reflectivity, 84
Angstrom, 8
angular frequency, 97
approximate spectral distributions, 25
bidirectional reflectivity,
reciprocity relation, 73
spectral, 50, 72
total, 50, 80
black, 9, 11
blackbody,
cavity, 37
definition, 11
emission into solid angle, 20
emissive power,
hemispherical, 19
definition, 18
angular dependence, 13, 18
emission within wavelength interval, 29
fourth power law, 28, 36
historical development, 43
manufacture of, 36
Planck’s radiation law, 21, 35, 43
properties, 11, 37
spectral distribution of intensity, 21, 23, 35
summary of properties, 38
tables of emission, 175
total intensity, 16, 27
Boltzmann, Ludwig, 44
cavity, blackbody, 37 .
complex refractive index, 36, 99,118
conduction,
equation, 4
Fourier’s Law of, 3
conductors, electrical,

radiative properties of, 98, 109, 116, 120, 122, 134

295-763 OL-68—13

185



186 THERMAL RADIATION HEAT TRANSFER

constants, radiation, 35, 174
convection, 5
conversion factors, 172-174
cosine law, 18, 42
cutoff wavelength for selective surface, 158
dielectrics,
radiative properties of, 108, 111, 115, 146
dielectric constant, 111
diffuse surfaces, 18, 77
directional,
surfaces, 165
absorptivity, 49, 64, 67, 145
emissivity, 48, 55, 57, 113, 135, 140
reflectivity, 50, 51, 75, 81, 111, 153
directional-hemispherical reflectivity,
spectral, 50, 75, 111
total, 50, 81 4
displacement law, 26
Draper point, 24
electromagnetic radiation, 16, 89
electromagnetic spectrum, 6
electromagnetic theory, 4
metals, 9, 98, 109, 116, 120 1
nonmetals, 107
simplifying restrictions, 89, 110
summary table of property predictions, 128
table of units, 92
electromagnetic waves,
characteristics, 92, 96
energy, 100
speed, 7,96 ;
electric intensity,gg ] ,
electrical conductors, 98, 109, 116 |
electrical resistivity, 92, 125
relation to emissivity, 122
emissive power,

blackbody, 18 {'

directional, 20

spectral, 20

total, 28, 36
emission,

blackbody, 15, 175

metals, 120, 127 b
emissivity,

definition, 55 ﬂ

directional spectral, 48, 55, 113, 135

directional total, 48, 57 A

electromagnetic theory predictions, 113, 116

hemispherical spectral, 48, 59

hemispherical total, 48, 59

metals, 116, 120, 126

nonmetals, 113, 115, 146

semiconductors, 155
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INDEX

energy,
in electromagnetic wave, 100
extinction coefficient, 98
field intensity,
electrical, 92
magnetic, 92
Fourier conduction law, 3
Fresnel equation, 108
frequency, 22
frequency form of Planck’s distribution, 22
frequency-wavelength relation, 22
gray surface, 67, 70
greenhouse effect, 163
grooved surface, 165
Hagen-Rubens equation, 124
hemispherical,
absorptivity, 49, 67, 68
emissivity, 48, 59
reflectivity, 50, 76, 82
hohlraum, 37
incidence of wave on interface,
dielectrics, 107
conductors, 109
integral equations in radiative transfer, 5
impurities on surface, 141
infrared radiation, 8
index of refraction,
complex, 36, 99, 118

simple, 7, 36, 97
insulators, 107
intensity,

blackbody, 15
fifth power temperature dependence for metals, 126
maximum blackbody, 29
spectral, 15, 21
total, 16, 27
isotropy within an enclosure. 12
Jeans, Sir James, 44
Kirchhoff’s Law, 65, 67, 71
table of restrictions, 70
Lamber’s Cosine Law, 18, 42
Laplace equation, 3
light,
speed in a vacuum, 7, 96
speed in media. 7
lunar reflected radiation, 153
magnetic permeability, 92
in vacuum, 92
magnetic intensity, 92
Maxwell, James Clark, 89
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Maxwell’s equations, 91
metals,
electromagnetic theory, 98, 116, 127
emissivity, 116, 134
reflectivity, 117
micron, 8
Moon,
reflectivity of, 153
nonmetals, 107, 111, 146
notation, 53
opaque substances, 9, 47, 146
optical constants,
relation to electrical and magnetic properties, 99, 123
optically smooth surface, 89, 138
permeability, magnetic, 92
permitivity, electric, 92
phase change in reflection, 105, 109
photon, 5
Planck, Max, 44
spectral distribution, 21, 35, 43
plane of incidence, 101
plane wave, 102
polarization of electric and magnetic waves, 66, 102, 130
parallel and perpendicular, 101
Poynting vector, 100
properties,
prediction by electromagnetic theory, table, 128
metals, 116, 134
nonmetals, 111, 146
semiconductors, 155
quantum theory, 5
radiation,
constants, 174
infrared, 8
spectrum, 6
thermal, 1, 6
ultraviolet, 6
visible, 6, 8
radiation laws,
blackbody formulas, 38
Lambert’s cosine law, 18
Planck’s law, 21
Stefan-Boltzmann law, 28, 36
Wien’s displacement law, 26
Wien’s spectral distribution, 26
Rayleigh, Lord, 44
Rayleigh-Jeans distribution, 26
recriprocity of reflectivities, 73, 75, 81, 82
table of restrictions, 83
reflectivity,
angular dependence, 153
bidirectional, 50, 72, 80
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diffuse, 77
directional-hemispherical, 50, 75, 81, 111
hemispherical, 51, 76, 82
hemispherical-directional, 51, 75, 82
polarization, 108, 110
reciprocity, 73, 75, 81, 82
relation to absorptivity and emissivity, 84
spectral, 72
specular, 78
table of reciprocity relations, 83
total, 80
refraction, 101
refractive index,
complex, 8, 36, 99, 118
relation to electrical and magnetic properties, 99
simple, 7, 36, 97
resistivity,
dependence on temperature, 125
relation to emissivity, 124, 126
roughness of surface,
analysis of effect, 139
effect on properties, 138, 152
selective surfaces,
cutoff wavelength, 158
for collection of radiation, 157
for emission, 164
glass enclosure, 163
semiconductors, 155
Snell’s Law, 107
solar radiation, 24, 157, 164
spectrally selective surfaces, 157
spectrum, electromagnetic, 6
specular surfaces, 78
speed of electromagnetic wave, 7
Stefan, Joseph, 44
Stefan-Boltzmann Law, 28, 36, 42
Stefan-Boltzmann constant, 28, 174
surfaces, effect on properties of,
purity, 141
roughness, 138, 152
surfaces, selective, 157
tables,
blackbody, 34, 175
conversion factors, 172-174
electromagnetic theory mks units, 92
Kirchhoff’s Law relations, 70
radiation constants, 174
reciprocity relations, 83
temperature,
effect on properties, 127, 137, 150
thermal radiation, 1
total radiation, 14, 16
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visible radiation, 8
wavelength, 1,8
at maximum blackbody emission, 27, 36, 43
wave, electromagnetic, 96
wave equation, 95
wave number, 22
wave number form of Planck’s distribution, 22
wave propagation, 92
dielectric, 93
conductor, 98
wave versus quantum model, 5
Wien, Willy, 44
Wien’s displacement law, 26, 36. 43
Wien’s spectral distribution, 26
relation to Planck’s law, 26
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